Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 21 of 21

Full-Text Articles in Computer Engineering

Modeling The Moisture Content And Drying Rate Of Zucchini (Cucurbita Pepo L.) In A Solar Hybrid Dryer Using Ann And Anfis Methods, Halil Nusret Bulus, Aytac Moralar, Soner Celen Sep 2023

Modeling The Moisture Content And Drying Rate Of Zucchini (Cucurbita Pepo L.) In A Solar Hybrid Dryer Using Ann And Anfis Methods, Halil Nusret Bulus, Aytac Moralar, Soner Celen

The Philippine Agricultural Scientist

Estimating product drying kinetics is critical to obtain the best drying process without compromising product quality and necessitates the development of numerical drying models. This research aims to compare the prediction models developed using artificial neural network (ANN) and adaptive network-based fuzzy inference system (ANFIS), two popular machine learning approaches in the recent years. Zucchini slices were chosen as samples and dried in a solar-assisted microwave belt dryer at 0.245 m/min belt speed and microwave powers of 0.7, 1, and 1.4 kW. On the data set obtained by computing the moisture content and drying rate values, prediction models were developed …


Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu Aug 2023

Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu

Doctoral Dissertations

In Single-Incision Laparoscopic Surgery (SILS), the Magnetic Anchoring and Guidance System (MAGS) arises as a promising technique to provide larger workspaces and field of vision for the laparoscopes, relief space for other instruments, and require fewer incisions. Inspired by MAGS, many concept designs related to fully insertable magnetically driven laparoscopes are developed and tested on the transabdominal operation. However, ignoring the tissue interaction and insertion procedure, most of the designs adopt rigid structures, which not only damage the patients' tissue with excess stress concentration and sliding motion but also require complicated operation for the insertion. Meanwhile, lacking state tracking of …


Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato May 2022

Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato

UNLV Theses, Dissertations, Professional Papers, and Capstones

Machine Learning (ML) methods including Deep Learning (DL) Methods have been employed in the medical field to improve diagnosis process and patient’s prognosis outcomes. Glioblastoma multiforme is an extremely aggressive Glioma brain tumor that has a poor survival rate. Understanding the behavior of the Glioblastoma brain tumor is still uncertain and some factors are still unrecognized. In fact, the tumor behavior is important to decide a proper treatment plan and to improve a patient’s health. The aim of this dissertation is to develop a Computer-Aided-Diagnosis system (CADiag) based on ML/DL methods to automatically estimate the Overall Survival Time (OST) for …


Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa Dec 2021

Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa

Graduate Theses and Dissertations

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in the world. Radiofrequency ablation (RFA) is an effective method for treating tumors less than 5 cm. However, manually placing the RFA needle at the site of the tumor is challenging due to the complicated respiratory induced motion of the liver. This paper presents the design, fabrication, and benchtop characterization of a patient mounted, respiratory compensated robotic needle insertion platform to perform percutaneous needle interventions. The robotic platform consists of a 4-DoF dual-stage cartesian platform used to control the pose of a 1-DoF needle insertion module. The active …


Fatigue Monitoring Through Wearable Sensors For Construction Workers, Srikanth Sagar Bangaru May 2021

Fatigue Monitoring Through Wearable Sensors For Construction Workers, Srikanth Sagar Bangaru

LSU Doctoral Dissertations

About 40% of the US construction workforce experiences high-level fatigue, which leads to poor judgment, increased risk of injuries, a decrease in productivity, and a lower quality of work. Excessive fatigue from working in unpleasant working conditions, long working hours, or heavy workloads can aggravate fatigue's adverse effects, leading to work-related musculoskeletal disorders (WMSDs) and productivity loss. Therefore, it is essential to monitor fatigue to reduce the adverse effects and preventing long-term health problems. However, since fatigue demonstrates itself in several complex processes, there is no single standard measurement method for fatigue detection. This research aims to develop a system …


Automated And Standardized Tools For Realistic, Generic Musculoskeletal Model Development, Trevor Rees Moon Jan 2020

Automated And Standardized Tools For Realistic, Generic Musculoskeletal Model Development, Trevor Rees Moon

Graduate Theses, Dissertations, and Problem Reports

Human movement is an instinctive yet challenging task that involves complex interactions between the neuromusculoskeletal system and its interaction with the surrounding environment. One key obstacle in the understanding of human locomotion is the availability and validity of experimental data or computational models. Corresponding measurements describing the relationships of the nervous and musculoskeletal systems and their dynamics are highly variable. Likewise, computational models and musculoskeletal models in particular are vitally dependent on these measurements to define model behavior and mechanics. These measurements are often sparse and disparate due to unsystematic data collection containing variable methodologies and reporting conventions. To date, …


The Affective Perceptual Model: Enhancing Communication Quality For Persons With Pimd, Jadin Tredup May 2019

The Affective Perceptual Model: Enhancing Communication Quality For Persons With Pimd, Jadin Tredup

UNLV Theses, Dissertations, Professional Papers, and Capstones

Methods for prolonged compassionate care for persons with Profound Intellectual and Multiple Disabilities (PIMD) require a rotating cast of import people in the subjects life in order to facilitate interaction with the external environment. As subjects continue to age, dependency on these people increases with complexity of communications while the quality of communication decreases. It is theorized that a machine learning (ML) system could replicate the attuning process and replace these people to promote independence. This thesis extends this idea to develop a conceptual and formal model and system prototype.

The main contributions of this thesis are: (1) proposal of …


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network …


Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro Jan 2019

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable …


Virtual Reality Simulation Of Glenoid Reaming Procedure, Mohammadreza Faieghi Dec 2018

Virtual Reality Simulation Of Glenoid Reaming Procedure, Mohammadreza Faieghi

Electronic Thesis and Dissertation Repository

Glenoid reaming is a bone machining operation in Total Shoulder Arthroplasty (TSA) in which the glenoid bone is resurfaced to make intimate contact with implant undersurface. While this step is crucial for the longevity of TSA, many surgeons find it technically challenging. With the recent advances in Virtual Reality (VR) simulations, it has become possible to realistically replicate complicated operations without any need for patients or cadavers, and at the same time, provide quantitative feedback to improve surgeons' psycho-motor skills. In light of these advantages, the current thesis intends to develop tools and methods required for construction of a VR …


Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson Dec 2017

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson

Doctoral Dissertations

The Tracking Fluoroscope System II, a mobile robotic fluoroscopy platform, developed and built at the University of Tennessee, Knoxville, presently employs a pattern matching algorithm in order to identify and track a marker placed upon a subject’s knee joint of interest. The purpose of this research is to generate a new tracking algorithm based around the human gait cycle for prediction and improving the overall accuracy of joint tracking.

This research centers around processing the acquired x-ray images of the desired knee joint obtained during standard clinical operation in order to identify and track directly through the acquired image. Due …


Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro Jan 2017

Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary …


Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop Jan 2017

Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop

Dissertations, Master's Theses and Master's Reports

For millions of people, mobility has been afflicted by lower limb amputation. Lower extremity prostheses have been used to improve the mobility of an amputee; however, they often require additional compensation from other joints and do not allow for natural maneuverability. To improve upon the functionality of ankle-foot prostheses, it is necessary to understand the role of different muscle activations in the modulation of mechanical impedance of a healthy human ankle. This report presents the results of using artificial neural networks (ANN) to determine the functional relationship between lower extremity electromyography (EMG) signals and ankle impedance in the transverse plane. …


An Emg-Based Patient Monitoring System Using Zynq Soc Device, Farhad Fallahlalehzari Dec 2016

An Emg-Based Patient Monitoring System Using Zynq Soc Device, Farhad Fallahlalehzari

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis describes the design, development, and testing of an EMG-based patient monitoring system using the Zynq device. Zynq is a system on chip device designed by Xilinx which consists of an ARM dual cortex-A9 processor as well as an FPGA integrated into one chip. This work also analyzes the performance of image-processing algorithms on this system and compares that performance to more traditional PC-based systems. Image processing algorithms, such as Sobel edge detection, dilation and erosion, could be used in conjunction with a camera for the patient monitoring purposes. These algorithms often perform sub-optimally on processors because of their …


Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar Nov 2016

Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar

Doctoral Dissertations

As assistive, wearable robotic devices are being developed to physically assist their users, it has become crucial to develop safe, reliable methods to coordinate the device with the intentions and motions of the wearer. This dissertation investigates the recognition of user intent during flexion and extension of the human torso in the sagittal plane to be used for control of an assistive exoskeleton for the human torso. A multi-sensor intent recognition approach is developed that combines information from surface electromyogram (sEMG) signals from the user’s muscles and inertial sensors mounted on the user’s body. Intent recognition is implemented by following …


In-Shoe Plantar Pressure System To Investigate Ground Reaction Force Using Android Platform, Ahmed A. Mostfa Jan 2016

In-Shoe Plantar Pressure System To Investigate Ground Reaction Force Using Android Platform, Ahmed A. Mostfa

Theses and Dissertations

Human footwear is not yet designed to optimally relieve pressure on the heel of the foot. Proper foot pressure assessment requires personal training and measurements by specialized machinery. This research aims to investigate and hypothesize about Preferred Transition Speed (PTS) and to classify the gait phase of explicit variances in walking patterns between different subjects. An in-shoe wearable pressure system using Android application was developed to investigate walking patterns and collect data on Activities of Daily Living (ADL). In-shoe circuitry used Flexi-Force A201 sensors placed at three major areas: heel contact, 1st metatarsal, and 5th metatarsal with a PIC16F688 microcontroller …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni May 2015

Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni

Doctoral Dissertations

Balance is among the most challenging tasks for patients with movement disorders. Study and treatment of these disorders could greatly benefit from combined software tools that offer better insights into neuromuscular biomechanics, and predictive capabilities for optimal surgical and rehabilitation treatment planning. A platform was created to combine musculoskeletal modeling, closed-loop forward dynamic simulation, optimization techniques, and neuromuscular control system design. Spinal (stretch-reflex) and supraspinal (operational space task-based) controllers were developed to test simulation-based hypotheses related to balance recovery and movement control. A corrective procedure (rectus femoris transfer surgery) was targeted for children experiencing stiff-knee gait and how this procedure …


Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder Dec 2014

Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder

UNLV Theses, Dissertations, Professional Papers, and Capstones

Actuators determine the performance of robotic systems at the most intimate of levels. As a result, much work has been done to assess the performance of different actuator systems. However, biomimetics has not previously been utilized as a pretext for tuning a series elastic actuator system with the purpose of designing an empirical testing platform. Thus, an artificial muscle tendon system has been developed in order to assess the performance of two distinct actuator types: (1) direct current electromagnetic motors and (2) ultrasonic rotary piezoelectric motors. Because the design of the system takes advantage of biomimetic operating principles such as …


Vision-Based Robot Control In The Context Of Human-Machine Interactions, Andrzej Nycz Aug 2012

Vision-Based Robot Control In The Context Of Human-Machine Interactions, Andrzej Nycz

Doctoral Dissertations

This research has explored motion control based on visual servoing – in the context of complex human-machine interactions and operations in realistic environments. Two classes of intelligent robotic systems were studied in this context: operator assistance with a high dexterity telerobotic manipulator performing remote tooling-centric tasks, and a bio-robot for X-ray imaging of lower extremity human skeletal joints during natural walking. The combination of human-machine interactions and practical application scenarios has led to the following fundamental contributions: 1) exploration and evaluation of a new concept of acquiring fluoroscope images of musculoskeletal features of interest during natural human motion, 2) creation …


Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser Jun 2012

Polygrasp: Reach; Myoelectric Prosthetic Hand Iteration, Devon Patrick Augustus, Mighells Blaed Deuel, Ian Noel Fraser, Nicholas Philip Moesser

Mechanical Engineering

Amputations are a common occurrence in soldiers returning home who have suffered the effects of IED and munitions explosions. For upper limb amputees, trans-radial amputations are the most common. Traditional hook devices do not offer an adequate level of normalcy for users, prompting the use of myoelectric devices. While current myoelectric devices do offer a more natural experience, they come with a host of other problems that makes their adoption by service personnel not desirable or not permitted by the VA. PolyGrasp Reach seeks to reduce weight and cost and improve performance. This addresses several of the issues with devices …