Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Engineering Science and Materials

Old Dominion University

Articles 1 - 1 of 1

Full-Text Articles in Computational Engineering

Nonhydrostatic Modeling Of Flow Interactions With Highly Flexible Vegetation, Navid Tahvildari, Ramin Familkhalili, Gangfeng Ma Jan 2020

Nonhydrostatic Modeling Of Flow Interactions With Highly Flexible Vegetation, Navid Tahvildari, Ramin Familkhalili, Gangfeng Ma

Civil & Environmental Engineering Faculty Publications

Improving our understanding of the interactions between gravity waves, currents, and coastal vegetation, which are nonlinear in nature, enables coastal engineers and managers to better estimate hydrodynamic forces on coastal infrastructure and utilize natural elements to mitigate their impacts. Aquatic vegetation is ubiquitous in coastal waters and it is well-known that flow loses energy over vegetation. Computational modeling of wave-vegetation interaction has been the subject of numerous recent studies and many improvements have been achieved in reducing limitations applied on wave and vegetation behavior in these models. Mechanisms for highly flexible vegetation have been incorporated in a Boussinesq-type model and …