Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computational Engineering

The Effect Of Oxygen On Properties Of Zirconium Metal, Jie Zhao Mar 2020

The Effect Of Oxygen On Properties Of Zirconium Metal, Jie Zhao

Doctoral Dissertations

The influence of oxygen on the thermophysical properties of zirconium has been investigated using MSL-EML (Material Science Laboratory Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations was subjected to multiple melt cycles during which the thermophysical properties, such as density, viscosity and surface tension, have been measured at various undercooled and superheated temperatures. Also, there are melt cycles for verifying the solidification mechanism. Similar samples were found to show anomalous nucleation of the solid for certain ranges …


Incipient Deformation Of Small Volumes Of Fcc Metals, Mahdi Bagheripoor Feb 2020

Incipient Deformation Of Small Volumes Of Fcc Metals, Mahdi Bagheripoor

Electronic Thesis and Dissertation Repository

In the area of mechanics of materials, the classic theories cannot describe the material behaviour as the volume of deformation or sample size is small enough to be compared with the size scales of the imperfections of the crystal. So, there has been a great deal of interest in investigating the plasticity of micron and nano-sized materials, in the last 20 years. As a Ph.D. research project, the deformation mechanism at small scales of fcc metals is studied based on dislocations behaviour. The effect of main parameters that haven’t been studied in detail, including, crystal orientation, pre-existing faults, grain boundaries, …


Computational Modeling Of Laminated Veneer Bamboo (Lvb) Dowel Joints, Niloufar Khoshbakht Feb 2020

Computational Modeling Of Laminated Veneer Bamboo (Lvb) Dowel Joints, Niloufar Khoshbakht

Doctoral Dissertations

Laminated veneer bamboo (LVB) is a sustainable building material that has been gaining interest in the construction industry of late. As a relatively new product, little is known about its connection performance, specifically, its failure behavior in dowel type joints and possible similarities it may have to engineered wood products in terms of failure mechanisms. Research is needed to aid in the understanding of LVB dowel connection failure behavior and to quantify the failure mechanism and key factors associated with LVB dowel connection strength. Modeling, as conducted in this research, is a valuable tool to help devise safe standards and …


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a first step of using …


Nonhydrostatic Modeling Of Flow Interactions With Highly Flexible Vegetation, Navid Tahvildari, Ramin Familkhalili, Gangfeng Ma Jan 2020

Nonhydrostatic Modeling Of Flow Interactions With Highly Flexible Vegetation, Navid Tahvildari, Ramin Familkhalili, Gangfeng Ma

Civil & Environmental Engineering Faculty Publications

Improving our understanding of the interactions between gravity waves, currents, and coastal vegetation, which are nonlinear in nature, enables coastal engineers and managers to better estimate hydrodynamic forces on coastal infrastructure and utilize natural elements to mitigate their impacts. Aquatic vegetation is ubiquitous in coastal waters and it is well-known that flow loses energy over vegetation. Computational modeling of wave-vegetation interaction has been the subject of numerous recent studies and many improvements have been achieved in reducing limitations applied on wave and vegetation behavior in these models. Mechanisms for highly flexible vegetation have been incorporated in a Boussinesq-type model and …