Open Access. Powered by Scholars. Published by Universities.®

Hydraulic Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Hydraulic Engineering

Quantifying Impacts Of Climate Change On Headwater Streamflow Regime In Robinson Forest: Insights From 35-Years Of Data Collection., Lauren Brown Dec 2023

Quantifying Impacts Of Climate Change On Headwater Streamflow Regime In Robinson Forest: Insights From 35-Years Of Data Collection., Lauren Brown

Electronic Theses and Dissertations

Climate change may shift patterns of streamflow permanence in headwater systems by altering the frequency, magnitude, duration, timing, and rate of change of surface streamflow, impacting both local ecosystems as well as regional water budgets and availability. While much uncertainty surrounds modeling-based methods to quantify the impacts of climate change on water budgets, long-term hydrologic data collected from headwaters in experimental research forests serve as critical evidence to reduce such uncertainty. The objective of this study is to quantify shifts in frequency, magnitude, duration, timing, and rate of change of streamflow in two headwater catchments with relatively little recent disturbance …


Pan-Arctic Soil Moisture Control On Tundra Carbon Sequestration And Plant Productivity, Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie S. Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López-Blanco, Albertus J. Dolman, Roisin Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn R. Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel H. Gosselin, Philip Marsh, Walter C. Oechel Mar 2023

Pan-Arctic Soil Moisture Control On Tundra Carbon Sequestration And Plant Productivity, Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie S. Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrén López-Blanco, Albertus J. Dolman, Roisin Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn R. Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel H. Gosselin, Philip Marsh, Walter C. Oechel

Daugherty Water for Food Global Institute: Faculty Publications

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance …