Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Materials Chemistry

Articles 1 - 12 of 12

Full-Text Articles in Membrane Science

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere Jul 2021

Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere

Graduate Theses and Dissertations

Porous polymer membrane filters are widely used in separation and filtration process. Micro- and ultra-filtration membranes are commonly used in biopharmaceutical applications such as filtering viruses and separating proteins from a carrier solution. The formation of these membrane filters via phase inversion is a complex and interconnected process where varying casting conditions can have a wide variety of effects on the final membrane morphol- ogy. Tailoring membrane filters for specific performance characteristics is a tedious and time consuming process. The time and length scales of membrane formation make it extremely difficult to experimentally observe membrane formation. Modeling the membrane formation …


Filtration Apparatus Design For Oil-Water Separation Using Membranes And Sponges, Alec Jerger Jan 2020

Filtration Apparatus Design For Oil-Water Separation Using Membranes And Sponges, Alec Jerger

Williams Honors College, Honors Research Projects

It can be difficult to separate water and oil emulsions through traditional filtration. Therefore, investigations of filtering using thermo-responsive (TR) polymers, in this case poly(vinyl methyl ether) (PVME), was conducted. It’s hypothesized that below its lower critical solution temperature (LCST), PVME has an affinity for water while oil substances do not. Above the LCST the opposite will be true. To verify this hypothesis, iterations of filtration designs were created to provide optimum control over the parameters to measure flow. The final optimized experimental apparatus was a Chromaflex glass column which was air tight and controlled all parameters besides fluid flow. …


Development Of Forward Osmosis Based Separations: A Novel Approach In Membrane Technology, Yu-Hsuan Chiao Dec 2019

Development Of Forward Osmosis Based Separations: A Novel Approach In Membrane Technology, Yu-Hsuan Chiao

Graduate Theses and Dissertations

Tackling the worldwide severe water shortage, the membrane technology is considered to be the most efficient approach and hence, used widely as a cost-effective sustainable solution. “Forward osmosis (FO)” has been the major attention in recent time. FO uses osmotic pressure as the driving force to draw the water passing the membrane and achieve the desired separation performance. In general, it is considered to be a process with tremendous potential to resolve the present-day water shortage with extremely low energy consumption. However, the challenges of membrane and draw solution regeneration associated with FO processes must be conquered prior to their …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin Dec 2017

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis …


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani Oct 2017

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this …


Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan Jan 2017

Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan

Theses and Dissertations--Chemistry

Given the amount of industrial waste produced each year, as well as the accruing amount of greenhouse gases in our atmosphere produced by the burning of fossil fuels, it is imperative that humanity develop environmentally-sustainable sources of energy and methods of remediation. Nature achieves both of these by use of enzymes as catalysts, inspiring interest in designing biomimetic systems capable of harnessing clean energy and remediating industrial waste. This study examined the ability of enzymes in electrochemical and convective flow systems to achieve these tasks. The first portion studied the incorporation of enzymes into an electrochemical system to drive the …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …