Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 22 of 22

Full-Text Articles in Membrane Science

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson May 2023

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson

Chemical Engineering Undergraduate Honors Theses

Society relies on plastic products, whether they are single use or durable. A downside of plastic is that the most common type is a product of oil and oil is not only a limited resource but also a climate-damaging resource. Polylactic acid (PLA) is a bio-based, biodegradable plastic. However, the process of converting biomass to polylactic acid polymer has the largest environmental impact of the PLA production process, so alternative methods of conversion are needed (Moretti et al., 2021). The polylactic acid polymer can be made with lactic acid, which can be converted from glucose.


Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh Apr 2023

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster May 2022

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …


Scale-Up Of Flow-Electrode Capacitive Deionization Method For Hard Water Softening, Noah Henry Jan 2022

Scale-Up Of Flow-Electrode Capacitive Deionization Method For Hard Water Softening, Noah Henry

Williams Honors College, Honors Research Projects

This study’s purpose is to further document a capacitive deionization design that could be capable of purifying H2O at a household scale where clean water is otherwise unobtainable in applicable regions of the world. The hypothesis behind this study was continuously larger scaled electrochemical cell-units would increase their water softening capabilities in sustainable fashion. The trend at which performance will scale is currently unknown. The units studied were constructed using graphite plates, anion exchange membranes, cation exchange membranes, and Teflon channels. Three streams, two being CaCl2 solutions in DI H2O (one being concentrated with CaCl …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere Jul 2021

Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere

Graduate Theses and Dissertations

Porous polymer membrane filters are widely used in separation and filtration process. Micro- and ultra-filtration membranes are commonly used in biopharmaceutical applications such as filtering viruses and separating proteins from a carrier solution. The formation of these membrane filters via phase inversion is a complex and interconnected process where varying casting conditions can have a wide variety of effects on the final membrane morphol- ogy. Tailoring membrane filters for specific performance characteristics is a tedious and time consuming process. The time and length scales of membrane formation make it extremely difficult to experimentally observe membrane formation. Modeling the membrane formation …


Filtration Apparatus Design For Oil-Water Separation Using Membranes And Sponges, Alec Jerger Jan 2020

Filtration Apparatus Design For Oil-Water Separation Using Membranes And Sponges, Alec Jerger

Williams Honors College, Honors Research Projects

It can be difficult to separate water and oil emulsions through traditional filtration. Therefore, investigations of filtering using thermo-responsive (TR) polymers, in this case poly(vinyl methyl ether) (PVME), was conducted. It’s hypothesized that below its lower critical solution temperature (LCST), PVME has an affinity for water while oil substances do not. Above the LCST the opposite will be true. To verify this hypothesis, iterations of filtration designs were created to provide optimum control over the parameters to measure flow. The final optimized experimental apparatus was a Chromaflex glass column which was air tight and controlled all parameters besides fluid flow. …


Development Of Forward Osmosis Based Separations: A Novel Approach In Membrane Technology, Yu-Hsuan Chiao Dec 2019

Development Of Forward Osmosis Based Separations: A Novel Approach In Membrane Technology, Yu-Hsuan Chiao

Graduate Theses and Dissertations

Tackling the worldwide severe water shortage, the membrane technology is considered to be the most efficient approach and hence, used widely as a cost-effective sustainable solution. “Forward osmosis (FO)” has been the major attention in recent time. FO uses osmotic pressure as the driving force to draw the water passing the membrane and achieve the desired separation performance. In general, it is considered to be a process with tremendous potential to resolve the present-day water shortage with extremely low energy consumption. However, the challenges of membrane and draw solution regeneration associated with FO processes must be conquered prior to their …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


Desalination Concentrate Disposal: Ecological Effects And Sustainable Solutions, Ryan Hanley Jun 2018

Desalination Concentrate Disposal: Ecological Effects And Sustainable Solutions, Ryan Hanley

Global Honors Theses

Freshwater availability is a growing global concern, and desalination is often presented as the solution, but from this important technology comes issues of toxic waste. Ecosystems are delicate areas that contain species adapted to that specific location, and any chemical or physical changes can disrupt the fitness of species. The concentrate byproduct waste from desalination plants is toxic to species if the concentrate is not compatible with the receiving water body. A critical review of scientific articles, industry-leading books, conversations with industry experts, and information from the American Membrane Technology Association conference was used to analyze the current knowledge. Species …


Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya Dec 2017

Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

New and advanced opportunities are arising for the synthesis and functionalization of membranes with selective separation, reactivity, and stimuli-responsive behavior. One such advancement is the integration of bio-based channels in membrane technologies. By a layer-by-layer (LbL) assembly of polyelectrolytes, outer membrane protein F trimers (OmpF) or “porins” from Escherichia coli with central pores ∼2 nm in diameter at their opening and ∼0.7 × 1.1 nm at their constricted region are immobilized within the pores of poly(vinylidene fluoride) microfiltration membranes, in contrast to traditional ruptured lipid bilayer or vesicle processes. These OmpF-membranes demonstrate selective rejection of non-charged organics over ionic solutes, …


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin Dec 2017

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis …


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani Oct 2017

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this …


A Quartz Crystal Microbalance Study Of Thiol:Ene Poly(Ionic Liquid) Polymerization And Gas Absorption, Yueming Wu Jan 2017

A Quartz Crystal Microbalance Study Of Thiol:Ene Poly(Ionic Liquid) Polymerization And Gas Absorption, Yueming Wu

Murray State Theses and Dissertations

ABSTRACT

The polymerization process of, and gas absorption by, imidazolium-containing thiol:ene poly (ionic liquid)s (PILs), prepared from bisallylimidazolium bis(trifluoromethyl sulfonyl)imide [NTf2-] and pentaerythritoltetrakis(3 mercaptopropionate), was studied. The thiol:ene PILs examined were recently reported by groups at Murray State University. The advantage of thiol:ene PILs over other reported PILs is that thiol:ene polymers are made rapidly by UV exposure and exhibit high mechanical and thermal stability due to high cross-linking. The properties of interest for the thiol:ene PILs were studied using a quartz crystal microbalance (QCM). QCM techniques are based on the piezoelectric effect, where certain crystals (e.g., …


Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan Jan 2017

Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan

Theses and Dissertations--Chemistry

Given the amount of industrial waste produced each year, as well as the accruing amount of greenhouse gases in our atmosphere produced by the burning of fossil fuels, it is imperative that humanity develop environmentally-sustainable sources of energy and methods of remediation. Nature achieves both of these by use of enzymes as catalysts, inspiring interest in designing biomimetic systems capable of harnessing clean energy and remediating industrial waste. This study examined the ability of enzymes in electrochemical and convective flow systems to achieve these tasks. The first portion studied the incorporation of enzymes into an electrochemical system to drive the …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …


Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang Dec 2013

Characterization Techniques And Electrolyte Separator Performance Investigation For All Vanadium Redox Flow Battery, Zhijiang Tang

Doctoral Dissertations

The all-vanadium redox flow battery (VRFB) is an excellent prospect for large scale energy storage in an electricity grid level application. High battery performance has lately been achieved by using a novel cell configuration with advanced materials. However, more work is still required to better understand the reaction kinetics and transport behaviors in the battery to guide battery system optimization and new battery material development. The first part of my work is the characterization of the battery systems with flow-through or flow-by cell configurations. The configuration difference between two cell structures exhibit significantly different polarization behavior. The battery output can …


Synthesis And Characterization Of Mesoporous Silica Membranes Modified By Atomic And Molecular Layer Deposition, David Emmett Cassidy May 2012

Synthesis And Characterization Of Mesoporous Silica Membranes Modified By Atomic And Molecular Layer Deposition, David Emmett Cassidy

Electronic Theses and Dissertations

Inorganic membranes offer a means for chemical separations in a variety of applications including chemical processing, drug delivery systems, battery separators and fuel cells. There is currently a “pore size gap” in silica membranes between 1-2 nanometers. Synthesizing membranes with a fine control of the pore size and distribution within that gap is a significant challenge. This thesis reports findings on using atomic and molecular layer deposition as new synthesis approaches to controlling pore size and chemical functionality of silica membranes. Mesoporous silica membranes, prepared using surfactant-templates with pore diameters ~4nm, were modified using atomic layer deposition and molecular layer …