Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Membrane Science

Assessing The Impact Of Block-Selective Homopolymers On The Diffusion Of Payload Through Polymeric Organogels, Ian Coates Jan 2021

Assessing The Impact Of Block-Selective Homopolymers On The Diffusion Of Payload Through Polymeric Organogels, Ian Coates

Honors Theses

Styrenic polymer gels have received recent attention for their application in transdermal patches due to their unique properties. Previous research in the pharmaceutical industry has identified that polymeric gels, specifically styrenic gels, have the potential to encompass multiple functions of the transdermal delivery patch including controlling mechanical and delivery properties. To tailor styrenic gels either the gel nanostructure or the drug complex can be controlled. Specifically, this thesis investigated the effect of gel nanostructure in an attempt to control the gel diffusivity and mechanical properties. To control gel nanostructure a phase selective styrene homopolymer was used at varying concentrations. It …


Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli Mar 2019

Synthesis And Molecular Transport Studies In Zeolites And Nanoporous Membranes, Vivek Vattipalli

Doctoral Dissertations

The advent of nanoporous materials such as zeolites and nanoporous membranes has provided cost-effective solutions to some of the most pressing problems of the 20th century such as the conversion of crude oil into fuels and valuable chemicals. Hierarchical zeolites and mesoporous inorganic membranes are showing great promise in addressing new problems such as the conversion of biomass into value-added chemicals and development of energy-efficient separation processes. The synthesis and fundamental aspects of molecular transport in these new materials with hierarchical porosities need to be better understood in order to rationally develop them for these desired applications. Pore narrowing …


Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti Nov 2017

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti

Chemical and Biological Engineering ETDs

Iron-nitrogen-carbon based catalyst was used at the cathode of a microbial desalination cell (MDC) and compared with platinum (Pt) and activated carbon (AC) cathode. Fe-N-C catalyst was prepared using nicarbazin (NCB) as organic precursor by sacrificial support method (SSM). Rotating ring disk electrode (RRDE) experiments shows that Fe-NCB had higher electrocatalytic activity compared to AC and Pt. The utilization of Fe-NCB into the cathode improved substantially the performance output with initial maximum power density of 49±2 μWcm-2 in contrast to Pt and AC catalysts which have shown lower values of 34±1 μWcm-2 and 23.5±1.5 μWcm-2, respectively. …