Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Membrane Science

Water Recovery From Bioreactor Mixed Liquors Using Forward Osmosis With Polyelectrolyte Draw Solutions, Calen Raulerson Dec 2021

Water Recovery From Bioreactor Mixed Liquors Using Forward Osmosis With Polyelectrolyte Draw Solutions, Calen Raulerson

All Theses

The objective of this research was to test the feasibility of using forward osmosis (FO) with polyelectrolyte draw solutions to recover water from bioreactor mixed liquors. When combined with an Anaerobic Osmotic Membrane Bioreactor (AnOMBR), such a system could process fecal and food waste from astronauts aboard the International Space Station (ISS) and reclaim important nutrients and water. This project focused on measuring the obtainable water recovery rates from bioreactor effluent, and the identifying challenges associated with the operation.

AnOMBRs feature several advantages over aerobic bioreactors, and non-osmotic anaerobic membrane bioreactors (AnMBR). Anaerobic bioreactors avoid the significant energy costs of …


Atomically Thin Nanoporous Graphene Membranes For Fluid Separation, Anika O. K. Wong Aug 2021

Atomically Thin Nanoporous Graphene Membranes For Fluid Separation, Anika O. K. Wong

Electronic Thesis and Dissertation Repository

Membrane separation applications such as water desalination and carbon capture require high permeance and selectivity. For such processes, nanoporous graphene membranes promise 100-fold higher permeance at comparable selectivity to conventional polymer membranes, but remain under development. This thesis reports fluid permeance through both simulated and experimental graphene nanopores. Molecular dynamics simulations were performed to investigate liquid advection-diffusion through graphene nanopores and how the transport rates differ from continuum predictions. Furthermore, a technique for measuring the gas permeance of nanoscopic areas of graphene was developed. Here, a single layer of graphene seals a ~10 nm diameter hole in a multi-layer graphene …


Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal Aug 2021

Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal

Electronic Thesis and Dissertation Repository

Membranes made from atomically thin materials promise hundreds of times higher production rates than conventional polymer membranes for separation applications. Graphene is impermeable to gases but becomes selectively permeable once pores are introduced into it but creating trillions of nanopores over large areas is difficult. By instead choosing an inherently porous two-dimensional material with naturally identical pores repeated at high density, we may circumvent this challenge. In this work, we explore the potential of two candidate materials, 2D polyphenylene and graphdiyne. We synthesize cyclohexane-m-phenylene, a monomer of 2D polyphenylene. We then develop an atomic force microscopy technique for measuring the …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Understanding Absorption, Supersaturation, And Drug Activity In Solution: Working Towards Developing A More Biorelevant Media, Freddy Arce Jan 2021

Understanding Absorption, Supersaturation, And Drug Activity In Solution: Working Towards Developing A More Biorelevant Media, Freddy Arce

Theses and Dissertations--Pharmacy

With the looming dominance of poorly water-soluble chemical entities within the pharmaceutical pipeline, the pharmaceutical industry has leaned on the use of supersaturating drug delivery systems (SDDSs) to achieve efficacious concentrations within the gastrointestinal fluids. SDDSs aim to achieve concentrations in solutions greater than the solubility of the lowest energy crystalline form. However, the generation of supersaturated solutions of active pharmaceutical ingredients (APIs) creates a strong crystallization potential, which is undesirable.

In product development, supersaturating products often fail in Phase I and Phase II clinical trials due to poor oral bioavailability and a lack of in vivo efficacy. Pre-clinical testing …


Assessing The Impact Of Block-Selective Homopolymers On The Diffusion Of Payload Through Polymeric Organogels, Ian Coates Jan 2021

Assessing The Impact Of Block-Selective Homopolymers On The Diffusion Of Payload Through Polymeric Organogels, Ian Coates

Honors Theses

Styrenic polymer gels have received recent attention for their application in transdermal patches due to their unique properties. Previous research in the pharmaceutical industry has identified that polymeric gels, specifically styrenic gels, have the potential to encompass multiple functions of the transdermal delivery patch including controlling mechanical and delivery properties. To tailor styrenic gels either the gel nanostructure or the drug complex can be controlled. Specifically, this thesis investigated the effect of gel nanostructure in an attempt to control the gel diffusivity and mechanical properties. To control gel nanostructure a phase selective styrene homopolymer was used at varying concentrations. It …


Simulation Of Water Loading In Filter Medium, Anthony Mole Jan 2021

Simulation Of Water Loading In Filter Medium, Anthony Mole

Williams Honors College, Honors Research Projects

This research will model fluid flow through a filter plugged with water droplets using FlexPDE software. After simulations are run at various initial conditions, curves will be developed to correlate the permeability of the filter to variables like water droplet distribution and size.