Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Membrane Science

Elevated Test Pressure Significantly Reduces Dynamic Accumulation Oxygen Transmission Rate (Astm F3136) Measurement Time For Barrier Packaging Films, Bruce A. Welt Sep 2015

Elevated Test Pressure Significantly Reduces Dynamic Accumulation Oxygen Transmission Rate (Astm F3136) Measurement Time For Barrier Packaging Films, Bruce A. Welt

Journal of Applied Packaging Research

Measurement of gas transmission rates of materials is important for successful package design. The dynamic accumulation (DA) method (ASTM F3136) is becoming increasingly popular for measuring oxygen transmission rate (OTR) due to its simplicity and low cost. However, measurement time increases with barrier properties of materials, limiting measurement throughput. A dynamic accumulation measurement prototype capable of operating up to 1,000 psig was developed in order to accelerate gas transfer by boosting concentration gradients via elevated absolute pressures. Results show that measurement results were independent of test pressure while measurement times were substantially reduced. These results also suggest that gas transmission …


A Study Of Diblock Copolymer/Charged Particle Nanoporous Membranes; Morphology, Design And Transport Property Modeling, Bo Zhang Aug 2015

A Study Of Diblock Copolymer/Charged Particle Nanoporous Membranes; Morphology, Design And Transport Property Modeling, Bo Zhang

Doctoral Dissertations

A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a neutral or charged nanoparticle attached either between the two blocks or at the end of copolymer. Particle size was varied between one and four tenths of the radius of gyration of the copolymer. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the molecular-level self-assembly processes with the aim of determining the appropriate morphologies used as nanoporous membranes, (i.e. the periodic, hexagonal arrays of cylinders wherein the particles would primarily be …