Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Membrane Science

Performance Evaluation Of Organic Emulsion Liquid Membrane On Phenol Removal, Yee Sern Ng, Jayakumar Natesan Subramaniam, Mohd Ali Hashim Jan 2010

Performance Evaluation Of Organic Emulsion Liquid Membrane On Phenol Removal, Yee Sern Ng, Jayakumar Natesan Subramaniam, Mohd Ali Hashim

Ng Yee-Sern

The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.


Dynamics Of Individual Molecules Of Linear Polyethylene Liquids Under Shear: Atomistic Simulation And Comparison With A Free-Draining Bead-Rod Chain, David Keffer, J. M. Kim, B. J. Edwards, B. Khomami Jan 2010

Dynamics Of Individual Molecules Of Linear Polyethylene Liquids Under Shear: Atomistic Simulation And Comparison With A Free-Draining Bead-Rod Chain, David Keffer, J. M. Kim, B. J. Edwards, B. Khomami

David Keffer

Nonequilibrium molecular dynamics (NEMD) simulations of a dense liquid composed of linear polyethylene chains were performed to investigate the chain dynamics under shear. Brownian dynamics (BD) simulations of a freely jointed chain with equivalent contour length were also performed in the case of a dilute solution. This allowed for a close comparison of the chain dynamics of similar molecules for two very different types of liquids. Both simulations exhibited a distribution of the end-to-end vector, |Rete|, with Gaussian behavior at low Weissenberg number (Wi). At high Wi, the NEMD distribution was bimodal, with two peaks …