Open Access. Powered by Scholars. Published by Universities.®

Membrane Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Membrane Science

Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn Jan 2019

Synthesis, Functionalization, And Application Of Nanofiltration And Composite Membranes For Selective Separations, Andrew Steven Colburn

Theses and Dissertations--Chemical and Materials Engineering

Future nanofiltration (NF) membranes used for selective separations of ions and small organic molecules must maintain performance in environments where high concentrations of total dissolved solvents or foulants are present. These challenges can be addressed through the development of composite membranes, as well as the engineering of enhanced surface properties and operating conditions for existing commercial membranes.

In this work, ion transport through commercial thin film composite (TFC) polyamide NF membranes were studied in both lab-prepared salt solutions and industrial wastewater. The dependence of several variables on ion rejection was investigated, including ion radius, ion charge, ionic strength, and temperature. …


Synthesis, Characterization And Applications Of Reduced Graphene Oxide And Composite Membranes For Selective Separations And Removal Of Organic Contaminants, Ashish Aher Jan 2019

Synthesis, Characterization And Applications Of Reduced Graphene Oxide And Composite Membranes For Selective Separations And Removal Of Organic Contaminants, Ashish Aher

Theses and Dissertations--Chemical and Materials Engineering

Among the next generation materials being investigated for membrane development, partially reduced Graphene Oxide (rGO) has received increasing attention from the membrane community. rGO-based nanofiltration membranes have shown promising results in applications such as partial desalination, organic contaminant removal, gas-phase separations, and separations from solvent media. rGO offers a unique platform compared to common polymeric membranes since it can be used for separation applications in both aqueous and organic solvent media. An rGO-based platform could also be utilized to synthesize reactive membranes, giving rGO membranes the additional capability of reactively removing organic contaminants. This research focuses on the synthesis of …


Pore-Confined Carriers And Biomolecules In Mesoporous Silica For Biomimetic Separation And Targeting, Shanshan Zhou Jan 2017

Pore-Confined Carriers And Biomolecules In Mesoporous Silica For Biomimetic Separation And Targeting, Shanshan Zhou

Theses and Dissertations--Chemical and Materials Engineering

Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through …


Nanofiltration Membranes From Oriented Mesoporous Silica Thin Films, Mary K. Wooten Jan 2014

Nanofiltration Membranes From Oriented Mesoporous Silica Thin Films, Mary K. Wooten

Theses and Dissertations--Chemical and Materials Engineering

The synthesis of mesoporous silica thin films using surfactant templating typically leads to an inaccessible pore orientation, making these films not suitable for membrane applications. Recent advances in thin film synthesis provide for the alignment of hexagonal pores in a direction orthogonal to the surface when templated on chemically neutral surfaces. In this work, orthogonal thin film silica membranes are synthesized on alumina supports using block copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as the template. The orthogonal pore structure is achieved by sandwiching membranes between two chemically neutral surfaces, resulting in 90 nm thick films. Solvent flux of ethanol through …