Open Access. Powered by Scholars. Published by Universities.®

Complex Fluids Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Complex Fluids

Fugacity-Based Lattice Boltzmann Method For Multicomponent Multiphase Systems, Muzammil Soomro, Luis F. Ayala, Cheng Peng, Orlando M. Ayala Jan 2023

Fugacity-Based Lattice Boltzmann Method For Multicomponent Multiphase Systems, Muzammil Soomro, Luis F. Ayala, Cheng Peng, Orlando M. Ayala

Engineering Technology Faculty Publications

The free-energy model can extend the lattice Boltzmann method to multiphase systems. However, there is a lack of models capable of simulating multicomponent multiphase fluids with partial miscibility. In addition, existing models cannot be generalized to honor thermodynamic information provided by any multicomponent equation of state of choice. In this paper, we introduce a free-energy lattice Boltzmann model where the forcing term is determined by the fugacity of the species, the thermodynamic property that connects species partial pressure to chemical potential calculations. By doing so, we are able to carry out multicomponent multiphase simulations of partially miscible fluids and generalize …


Atomistic Simulation Of Energetic And Entropic Elasticity In Short-Chain Polyethylenes, David Keffer, T. C. Ionescu, V. G. Mavrantzas, B. J. Edwards Jan 2008

Atomistic Simulation Of Energetic And Entropic Elasticity In Short-Chain Polyethylenes, David Keffer, T. C. Ionescu, V. G. Mavrantzas, B. J. Edwards

David Keffer

The thermodynamical aspects of polymeric liquids subjected to uniaxial elongational flow are examined using atomistically detailed nonequilibrium Monte Carlo simulations. In particular, attention is paid to the energetic effects, in addition to the entropic ones, which occur under conditions of extreme deformation. Atomistic nonequilibrium Monte Carlo simulations of linear polyethylene systems, ranging in molecular length from C24 to C78 and for temperatures from 300 to 450 K, demonstrate clear contributions of energetic effects to the elasticity of the system. These are manifested in a conformationally dependent heat capacity, which is significant under large deformations. Violations of the hypothesis …