Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Zeolite

2014

Articles 1 - 2 of 2

Full-Text Articles in Catalysis and Reaction Engineering

Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams Nov 2014

Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams

Doctoral Dissertations

Increasing demand for renewable and domestic energy and materials has led to an accelerated research effort in developing biomass-derived fuels and chemicals. The North American shale gas revolution can provide a domestic source for the manufacture of four of the five major products of the world chemical industry: methanol, ethylene, ammonia, and propylene. However this emerging domestic resource lacks a conversion pathway to the fifth major chemical building block; the larger C6 aromatics benzene, toluene, and xylene (BTX). One sustainable feedstock for renewable C6 aromatic chemicals is sugars produced by the saccharification of biopolymers (e.g., cellulose, hemicellulose). The catalytic conversion …


Production Of Renewable Fuels And Chemicals From Biomass-Dervied Furan Compounds, Sara K. Green Nov 2014

Production Of Renewable Fuels And Chemicals From Biomass-Dervied Furan Compounds, Sara K. Green

Doctoral Dissertations

Growing concern over the petroleum supply, energy independence, and environmental impacts associated with fossil fuels, has motivated research into the production of renewable fuels and aromatic chemicals from biomass resources. Specifically, furan-based feedstocks such as furfural, 2-methylfuran (MF) and, 2,5-dimethylfuran (DMF) can be derived from biomass and used to produce a wide variety of desired compounds. These furan-based feedstocks are produced by: (a) the hydrolysis of cellulose and hemicellulose form to glucose and xylose, (b) the dehydration of these carbohydrates to form 5-hydroxymethylfurfural (HMF) and furfural, and (c) the reduction of HMF and furfural to DMF, MF, and furan. The …