Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Catalysis and Reaction Engineering

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson Aug 2017

Simulating Microbial Electrolysis For Renewable Hydrogen Production Integrated With Separation In Biorefinery, Christian James Wilson

Masters Theses

Biomass conversion to hydrocarbon fuels requires significant amounts of hydrogen. Fossil resources typically supply hydrogen via steam reforming. A new technology called microbial electrolysis cells (MECs) has emerged which can generate hydrogen from organic sources and biomass. The thermochemical route to fuels via pyrolysis generates bio-oil aqueous phase (BOAP) which can be used to make hydrogen. A process engineering and economic analysis of this technology was conducted for application in biorefineries of the future. Steam methane reforming, bio-oil separation and microbial electrolysis unit operations were simulated in Aspen Plus to derive the mass and energy balance for conversion of biomass. …


Lignin Yield Maximization Of Lignocellulosic Biomass By Taguchi Robust Product Design Using Organosolv Fractionation, Anton Friedrich Astner Dec 2012

Lignin Yield Maximization Of Lignocellulosic Biomass By Taguchi Robust Product Design Using Organosolv Fractionation, Anton Friedrich Astner

Masters Theses

Lignin, a byproduct of the organosolv pretreatment process using lignocellulosic biomass from switchgrass (Panicum virgatum) and tulip poplar (Liriodendron tulipifera) is currently being explored for its potential use in the production of value-added chemicals and biobased polymers. Pretreatment is one of the most expensive processing steps in cellulosic biomass conversion. Optimization of the process is one of the major goals of the biomass-toethanol conversion process. Taguchi Robust Product Design (TRPD) provides an effective engineering experimental design method for optimizing a system and designing products that are robust to process variations. Given the results of several preliminary …