Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Lithium-ion batteries

Articles 1 - 12 of 12

Full-Text Articles in Catalysis and Reaction Engineering

Facile One-Step Solid-State Synthesis Of Ni-Rich Layered Oxide Cathodes For Lithium-Ion Batteries, Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan Aug 2022

Facile One-Step Solid-State Synthesis Of Ni-Rich Layered Oxide Cathodes For Lithium-Ion Batteries, Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan

Journal of Electrochemistry

Nickel-rich layered oxide is one of the dominate cathode materials in the lithium ion batteries, due to its high specific energy density meeting the range requirement of the electric vehicles. Typically, the commercial Ni-rich layered oxides are synthesized from co-precipitated precursors, while precision control is required in the co-precipitation process to ensure the atomic level mixing of the cations such as Ni, Co and Mn, et.al. In this work, a one-step solid-state method was successfully applied to synthesize the Ni-rich layered oxide materials with ultra-high Ni content. By choosing the nickel hydroxides as the precursor with layered structure similar to …


Synthesis Of Lithium-Rich Manganese-Based Layered Cathode Materials And Study On Its Structural Evolution Of First Cycle Overcharge, Chen-Xu Luo, Chen-Guang Shi, Zhi-Yuan Yu, Ling Huang, Shi-Gang Sun Jan 2022

Synthesis Of Lithium-Rich Manganese-Based Layered Cathode Materials And Study On Its Structural Evolution Of First Cycle Overcharge, Chen-Xu Luo, Chen-Guang Shi, Zhi-Yuan Yu, Ling Huang, Shi-Gang Sun

Journal of Electrochemistry

Lithium-rich manganese-based cathode materials have become one of promising cathode materials due to their low cost and large discharge specific capacity exceeding 250 mAh·g-1. However, their problems such as low coulombic efficiency of first cycle and apparent voltage decay influence commercialization process. The high charging voltage will cause instability of structure and increase the hidden danger of the battery. Therefore, structural evolution of first cycle at higher voltage needs to be further studied. In this work, the precursor was synthesized by the co-precipitation method, and the lithium-rich manganese-based layered cathode materials were prepared by lithium-mixed and high-temperature sintering, and the …


Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao Feb 2019

Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao

Journal of Electrochemistry

In order to improve the electrochemical properties of vanadium disulfide (VS2) as an electrode material in Li-ion battery, the flower-like VS2 was prepared by a one-step hydrothermal method with the addition of polyethylene glycol 400. The phase and morphology of the product were characterized by using X-ray diffraction and field emission scanning electron microscopy. During the growth process, it was observed that the flower-like VS2 was interspersed with several hexagonal vanadium disulfide nanosheets, which had a high specific surface area and excellent structural stability. The flower-like VS2 was used for the cathode material test in …


Synthesis And Electrochemical Properties Of Li3V2(Bo3)3/C Anode Materials For Lithium-Ion Batteries, You Wang, Yi-Wen Zeng, Xing Zhong, Xing Liu, Quan Tang Apr 2018

Synthesis And Electrochemical Properties Of Li3V2(Bo3)3/C Anode Materials For Lithium-Ion Batteries, You Wang, Yi-Wen Zeng, Xing Zhong, Xing Liu, Quan Tang

Journal of Electrochemistry

The Li3V2(BO3)3/C (LVB/C) composite materials were successfully synthesized in two steps:Firstly, a stoichiomertric mixture of Li2C2O4, V2O5, H3BO3, H2C2O4•H2O and ethanol was thoroughly ball-milled to get the precursors. Secondly, the precursors were post-calcinated to get the ultimate products. The calcination temperatures of 750 ℃, 800 ℃ and 850 ℃ were selected based on TG-DTA analyses. The crystal structures, surface morphologies and carbon contents of the samples calcinated at five conditions, …


Electrochemical Performance Of Lifepo4/C Synthesized Via Aqueous Solution-Evaporation Route, Ning-Yu Gu, Xing-Hua He, Yang Li Apr 2013

Electrochemical Performance Of Lifepo4/C Synthesized Via Aqueous Solution-Evaporation Route, Ning-Yu Gu, Xing-Hua He, Yang Li

Journal of Electrochemistry

The LiFePO4/C samples have been synthesized via an aqueous solution-evaporation route with LiH2PO4, FeC2O4.2H2O as raw materials and citric acid as a carbon source. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze structure and morphology of the samples. The electrochemical performances of the LiFePO4/C cathodes were characterized by charge/discharge cures and electrochemical impedance spectroscopy (EIS). The results show that the LiFePO4/C sample, calcined at 700 °C and contained 3.03% (by mass) carbon, exhibited a highly pure …


Synthesis And Electrochemical Properties Of Yttrium-Doped Lini0.49mn1.49y0.02o4, Xian-Wen Zhang, Zheng-Xi Zhang, Li Yang, Shao-Hua Fang, Long Qu Apr 2012

Synthesis And Electrochemical Properties Of Yttrium-Doped Lini0.49mn1.49y0.02o4, Xian-Wen Zhang, Zheng-Xi Zhang, Li Yang, Shao-Hua Fang, Long Qu

Journal of Electrochemistry

The LiNi0.49Mn1.49Y0.02O4 cathode material was synthesized using the citric acid-assisted sol-gel method by partial substitutions of Ni and Mn with Y in the LiNi0.5Mn1.5O4 material. The influences of Y doping on the structure and electrochemical properties were investigated by means of X-ray diffraction, cyclic voltammetry, galvanostatic charge/discharge tests and AC impedance spectroscopy. The results showed that the introduction of Y into the LiNi0.5Mn1.5O4 greatly improved the cycle performance and rate capability. When the charge and discharge current was 1 C in the potential range from 3.5 to 4.9 V, the LiNi0.49Mn1.49Y0.02O4 electrode delivered the initial discharge capacity of 114.9 mAh?g-1 …


Synthesis Of Lini0.5co0.2mn0.3o2 For Lithium Ion Batteries And The Mechanism Of Capacity Fading At High Temperature, Wen Liu, Miao Wang, Ji-Tao Chen, Xin-Xiang Zhang, Heng-Hui Zhou Apr 2012

Synthesis Of Lini0.5co0.2mn0.3o2 For Lithium Ion Batteries And The Mechanism Of Capacity Fading At High Temperature, Wen Liu, Miao Wang, Ji-Tao Chen, Xin-Xiang Zhang, Heng-Hui Zhou

Journal of Electrochemistry

The Ni-rich cathode materials, LiNi0.5Co0.2Mn0.3O2, have been synthesized by Co-precipitation and high-temperature solid-phase sintering method. Constant current charge-discharge tests showed high discharge capacity of 179.2 mAh.g-1 in the 3.0 ? 4.4 V at 0.2C. However, at 55 °C the LiNi0.5Co0.2Mn0.3O2 experienced the dramatic capacity fading after 100 charge-discharge cycles. Electrochemical Impedance Spectroscopy, X-Ray Photoelectron Spectroscopy, Atomic Emission Spectroscopy have been employed to study the capacity fading mechanism of LiNi0.5Co0.2Mn0.3O2 cycled at high temperature in range of high-voltage charge and discharge conditions. It was found that at high temperature under conditions of high-voltage range, the side reactions between the electrolyte and …


Synthesis And Electrochemical Properties Of Lifeso4f/Graphene Composite As Cathode Material For Lithium-Ion Batteries, Wei Guo, Ya-Xia Yin, Li-Jun Wan, Yu-Guo Guo Apr 2012

Synthesis And Electrochemical Properties Of Lifeso4f/Graphene Composite As Cathode Material For Lithium-Ion Batteries, Wei Guo, Ya-Xia Yin, Li-Jun Wan, Yu-Guo Guo

Journal of Electrochemistry

The LiFeSO4F was successfully synthesized from the reactions of FeSO4?xH2O (x=1, 4, 7) with LiF in tetraethylene glycol media through a facile low temperature method. The structures and microscopic features of the products were characterized by XRD, SEM and TEM. TGA result shows the good thermal stability of the as-prepared LiFeSO4F. No diffraction peaks of the FeSO4 are observed in the as-prepared products with the starting material of either FeSO4?4H2O or FeSO4?7H2O, which should be ascribed to delaying the release of H2O from the hydrated compounds. Cyclic voltammetry (CV) curves and electrochemical impedance spectroscopy (EIS) results prove that the LiFeSO4F/graphene …


Electrochemical Performance Of Tin Dioxide/Carbon Xerogel Composites As Anode Materials For Lithium-Ion Batteries, Xiao-Jing Liu, Lin-Lin Qin, Yi-Ning Shi, Ming-Sen Zheng, Quan-Feng Dong Aug 2011

Electrochemical Performance Of Tin Dioxide/Carbon Xerogel Composites As Anode Materials For Lithium-Ion Batteries, Xiao-Jing Liu, Lin-Lin Qin, Yi-Ning Shi, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The tin dioxide/carbon xerogel composites were synthesized by using vacuum infiltration method. Structural characterization and morphology of the composites were investigated by using XRD, TEM and SEM techniques. BET test was performed to determine the pore size distributions of carbon xerogels and the composites. The results showed that the nano-sized SnO2 particles (5~10 nm) were encapsulated in the pores of carbon xerogels. During the electrochemical tests the SnO2 in the composites exhibited capacity retention of 61.9% after 100 cycles of charge-discharge tests at 100 mA/g.


Synthesis And Characterization For A New Organic Cathode Material Of Lithium-Ion Batteries——Poly Sulfurized Chloranilic Acid(Psca), Kai Liu, Jian-Ming Zheng, Gui-Ming Zhong, Yong Yang Aug 2009

Synthesis And Characterization For A New Organic Cathode Material Of Lithium-Ion Batteries——Poly Sulfurized Chloranilic Acid(Psca), Kai Liu, Jian-Ming Zheng, Gui-Ming Zhong, Yong Yang

Journal of Electrochemistry

A new organic cathode material,poly sulfurized chloranilic acid(PSCA),has been successfully synthesized for lithium-ion batteries. 13C solid state NMR and FTIR results indicated that the chorine in chronailic acid was substituted by sulfur after sulfurization. The electrochemical measurements showed that the initial discharge capacity of PSCA was up to 287.6 mAh/g,and 169.9 mAh/g still remained after 100 cycles when cycled between 1.5~3.6 V at the current density of 15 mA/g.


The Synthesis,Structure And Electrochemical Performances Of Lithium Iron Phosphate, Hui Xie Nov 2006

The Synthesis,Structure And Electrochemical Performances Of Lithium Iron Phosphate, Hui Xie

Journal of Electrochemistry

The lithium iron phosphate cathode materials were synthesized by solid-state reaction combined high-rate ball milling under the temperature ranging from 400 ℃ to 700 ℃.The crystalline structure,morphology of particles,and electrochemical performance of the sample were investigated by X-ray diffraction,scanning electron microscopy and charge-discharge test.The results showed that the sintering temperature had great influences on the crystal structure,morphology and electrochemical performances of LiFePO_(4).The sample synthesized under 600℃ showed the best charge-discharge performances with the first specific discharge capacity of(128.8) mAh/g and the 15~(th) specific discharge capacity of 129.1 mAh/g at 0.1C rate,each charge-discharge cycling efficiency being 99.7%.Also the sample showed good …


Synthesis And Electrochemical Behavior Of Layered-Structure Limn_(1-X)Cr_Xo_2, Jie Xiao, Hui Zhan, Yun-Hong Zhou Aug 2004

Synthesis And Electrochemical Behavior Of Layered-Structure Limn_(1-X)Cr_Xo_2, Jie Xiao, Hui Zhan, Yun-Hong Zhou

Journal of Electrochemistry

The Layered-structure LiMn_(1-x)Cr_xO_(2 )(x=0,0.15) solid solution has been prepared by the rheological phase method. From the XRD results, undoped LiMnO_(2) crystallized almost entirely in the orthorhombic phase while the structure of LiMn_(0.85)Cr_(0.15)O_(2) belongs to monoclinic phase. TEM investigation shows that the final powder product consists of ultrafine spherical particles which are distributed homogeneously, with the average diameter ranging from 60 to 300nm. The initial discharge capacity of LiMn_(0.85)Cr_(0.15)O_(2) is much higher than that of undoped LiMnO_(2). After 40 cycles, the capacity retention for m-LiMn_(0.85)Cr_(0.15)O_(2 )is 94% at the current rate of 50mA/g under room temperature. The results of electrochemistry tests …