Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Lithium ion battery

Articles 1 - 14 of 14

Full-Text Articles in Catalysis and Reaction Engineering

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang Oct 2023

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

With the rapid development of electric vehicles, enormous demands are made for higher energy density, better cycling performance and lower cost of lithium-ion batteries (LIBs). As an important high capacity cathode material for LIBs, the high nickel layered oxide material LiNi0.8Co0.1Mn0.1O2(NCM811) can reach an energy density of 760 Wh·kg-1. The ultra-high nickel ternary positive electrode material (LiNi1-x-yCoxMnyO2, x ≥ 0.90) has a specific capacity of more than 210 mAh·g-1, and can realize higher energy density. Besides, an ultra-high nickel material …


Structural Degradation Of Ni-Rich Layered Oxide Cathode For Li-Ion Batteries, Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su Feb 2022

Structural Degradation Of Ni-Rich Layered Oxide Cathode For Li-Ion Batteries, Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su

Journal of Electrochemistry

Nickel(Ni)-rich layered oxide has been regarded as one of the most important cathode materials for the lithium-ion batteries because of its low cost and high energy density. However, the concerns in safety and durability of this compound are still challenging for its further development. On this account, the in-depth understanding in the structural factors determining its capacity attenuation is essential. In this review, we summarize the recent advances on the degradation mechanisms of Ni-rich layered oxide cathode. Progresses in the structure evolution of Ni-rich oxide are carefully combed in terms of inner evolution, surface evolution, and the property under thermal …


Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia Jun 2015

Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia

Journal of Electrochemistry

In present work, lithium-rich layered transition metal oxide (LLO) was synthesized by a co-precipitation method in combination with a solid-state reaction. The graphene wrapped Li-rich layered oxide composite (LLO/Gra) was obtained by sintering the LLO/GO composite at 300 oC for 30 min in an air. The morphologies and the electrochemical performances were characterized by means of SEM, TEM, XRD, XPS, EIS and charge/discharge tests. The results indicated that the LLOe particles were uniformly wrapped with graphene. The resulting material exhibited better rate capability than that of pristine LLO since the wrapped graphene demonstrated the enhanced electronic conductivity. Accordingly, the …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng Dec 2013

Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng

Journal of Electrochemistry

Li2FeSiO4/C cathode material was synthesized using Li2SiO3 and FeC2O4 as raw materials by solid state method. The structure and morphology of the material were characterized by XRD and SEM. The electrochemical properties of the material were studied by constant-current cyclic testing. The results show that Li2FeSiO4/C has a good electrochemical performance. The first discharge capacity of Li2FeSiO4/C cathode material at 30oC reached 167 mAhg-1 when cycled at 10 mAg-1 between 1.5 and 4.8 V.


Synthesis And Electrochemical Properties Of Li(Ni0.5Co0.2Mn0.3)1-2xTiXNbXO2, Yong Tang, Qin-Lin Liao, Xiang-An Guo Aug 2013

Synthesis And Electrochemical Properties Of Li(Ni0.5Co0.2Mn0.3)1-2xTiXNbXO2, Yong Tang, Qin-Lin Liao, Xiang-An Guo

Journal of Electrochemistry

The cathode-active materials of layered Li(Ni0.5Co0.2Mn0.3)1-2xTixNbxO2(x=0, 0.002, 0.005, 0.01, 0.02)composites were synthesized by the thermal treatment of the coprecipitated precursor at 900 oC in air. The effects of Ti-Nb co-dopants on the structural and electrochemical properties of Li(Ni0.5Co0.2Mn0.3)O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical experiments. The results show that the small amounts of Ti-Nb co-dopants in Li(Ni0.5Co0.2Mn0.3)O2significantly decreased the degree of cation mixing in …


Synthesis Of Limnpo4/C Used As Cathode Material For Lithium Ion Batteries, Xin Yang, Xue-Wu Liu, Gui-Chang Liu, Zhi-Cong Shi, Xin Li, Guo-Hua Chen Aug 2011

Synthesis Of Limnpo4/C Used As Cathode Material For Lithium Ion Batteries, Xin Yang, Xue-Wu Liu, Gui-Chang Liu, Zhi-Cong Shi, Xin Li, Guo-Hua Chen

Journal of Electrochemistry

The LiMnPO4/C composites were prepared using a solid-state reaction with addition of the resorcinol formaldehyde resin as the carbon source. The effects of reaction temperature and time on the crystal structure, morphology and electrochemical properties of the LiMnPO4/C composites were investigated. The results show that the best performance was achieved with the LiMnPO4/C composites synthesized at 600 oC for 12 h which had the particle sizes about 100~200 nm. The initial discharge capacities were 121.6 mAh?g-1 at 0.02C, 110 mAh?g-1 at 0.1C and more than 60 mAh?g-1 at 1C. An overall reversible capacity of 110 mAh?g-1 had been retained after …


Synthesis Of High-Performance Lini_(1/3)Co_(1/3)Mn_(1/3)O_2 Cathode Materials Via Azeotropic Distillation Method, Sheng-An Xia, Li-Xia Yuan, Ze Yang, Zhao-Hui Wang, Yun-Hui Huang, Shuang Li, Wu-Xing Zhang, Ya-Bin Meng, Wei-Gong Zheng Feb 2010

Synthesis Of High-Performance Lini_(1/3)Co_(1/3)Mn_(1/3)O_2 Cathode Materials Via Azeotropic Distillation Method, Sheng-An Xia, Li-Xia Yuan, Ze Yang, Zhao-Hui Wang, Yun-Hui Huang, Shuang Li, Wu-Xing Zhang, Ya-Bin Meng, Wei-Gong Zheng

Journal of Electrochemistry

Layered LiNi1/3Co1/3Mn1/3O2 is one of the most promising alternative materials for LiCoO2 in lithium ion batteries due to its low cost,large capacity and excellent cyclability.In this paper,LiNi1/3 Co1/3 Mn1/3 O2 was synthesized via azeotropic distillation method with isobutyl alcohol as an azeotropic agent.The structure and surface morphology were characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM),respectively.The as-prepared LiNi1/3Co1/3Mn1/3O2 shows a layered α-NaFeO2 structure;the particles are small and uniformly distributed.As compared with the sample prepared by traditional method,the present cathode material exhibits superior cyclability and rate capability,which can be ascribed to the enhanced Li + diffusion due to smaller and more …


The Hydrothermal Synthesis Of Nanoscale Lifepo_4 And Its Electrochemical Performance, Si-Min Wang, Ming-Sen Zheng, Quan-Feng Dong Nov 2008

The Hydrothermal Synthesis Of Nanoscale Lifepo_4 And Its Electrochemical Performance, Si-Min Wang, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The cathode materials of nanosiged LiFePO4 were prepared by hydrothermal templating synthesis.The grain sizes and electrochemical performance of LiFePO4 were controlled by surfactant.It was shown that the grain sizes varied from less than a hundred to hundreds nanometers by the SEM images.In the charge/discharge tests,the discharge capacities of the sample as a lithium ion battery were achieved to 150 mAh/g at 0.1C,140 mAh/g at 1C,and 126 mAh/g at 2C,with good cycling performance.


Studies On Synthesis And Electrochemical Performance Of Li_(X)Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2) As Cathode Material For Lithium Ion Batteries, Xiao-Jian Guo, Jie Li, Yi-Xiao Li, Yong Yang Aug 2006

Studies On Synthesis And Electrochemical Performance Of Li_(X)Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2) As Cathode Material For Lithium Ion Batteries, Xiao-Jian Guo, Jie Li, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

A series of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_(2) were synthesized by a combined hydroxides coprecipitation and calcination method.Effects of synthesizing temperature of coprecipitations and the Li∶M ratios on structure and electrochemical performance of the materials were studied.The results showed that materials synthesized with coprecipitation at room temperature(~20 ~(o)C) delivered the best electrochemical performance.Another series of cathode materials Li_(x)Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2) with different Li∶M ratios were synthesized with this method.The results showed that sintering at high temperature could cause loss of LiOH,thus more LiOH should be added.It is demonstrated that Li_(1.08)Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2) had the best electrochemical performance.


Synthesis And Characterization Of Lini_(0.8-X)Al_Xco_(0.2)O_2 As Cathodes For Lithium-Ion Batteries, Jun Zhang, Zhong-Kao Jin, Qing-He Yang, Qing-Mei Song, Xiao-Hua Ma, Xiang-Fu Zong Aug 2002

Synthesis And Characterization Of Lini_(0.8-X)Al_Xco_(0.2)O_2 As Cathodes For Lithium-Ion Batteries, Jun Zhang, Zhong-Kao Jin, Qing-He Yang, Qing-Mei Song, Xiao-Hua Ma, Xiang-Fu Zong

Journal of Electrochemistry

Single_phase solid solution of LiNi 0.8- x Al x Co 0.2 O 2 (0≤ x <0.1)had been synthesized and characterized by X_ray diffraction(XRD) and scanning electron microscopy (SEM). Their electrochemical performance was examined by charge_discharge cycling.The LiNi 0.71 Al 0.09 Co 0.2 O 2 compound showed a discharge capacity of 152 mAh/g after 20 cycles that corresponds to 97.4% capacity retention. The beneficial effect of co_doping with Al and Co elements was corro_borated by slow scanning cyclic voltammograms(SSCV),electrochemical impedance spectrum(EIS)and differential scanning calorimetry(DSC) data on charged cathodes. These results show that the 2D_character of the crystal lattice was stabilized by co_doping with Al and Co, the phase transitions that occur during deintercalation or intercalation of Li_ions were significantly suppressed,and thermal stability in the charged state was also improved.


The Influence Of Synthesis Conditions On The Electrochemical Properties Of Spinel Limn_2o_4, Jun Feng Xu, Zhi Yu Jiang Nov 2001

The Influence Of Synthesis Conditions On The Electrochemical Properties Of Spinel Limn_2o_4, Jun Feng Xu, Zhi Yu Jiang

Journal of Electrochemistry

The electrochemical properties of spine LiMn 2O 4 synthesized via a solid state reaction were investigated. Electrolysis MnO 2(EMD), Li 2CO 3,LiOH and LiNO 3 were used as the initial materials. It was found that the electrochemical properties of LiMn 2O 4 were strongly influenced by the synthesis conditions. The LiMn 2O 4 samples prepared via the reaction of EMD and LiNO 3 showed the best properties for a lithium ion intercalation reaction. The procedure includes two steps: pretreatment at 280 ℃ for 6 hours to initiate the permeation of melting LiNO 3 into the micropores of EMD particles, followed …


A Preliminary Study Of The Synthesis Of Tin Based Amorphous Material And Its Behavior On Lithium Intercalation, Li Liu, Hanxi Yang, Jutang Sun, Xingping Ai Nov 1998

A Preliminary Study Of The Synthesis Of Tin Based Amorphous Material And Its Behavior On Lithium Intercalation, Li Liu, Hanxi Yang, Jutang Sun, Xingping Ai

Journal of Electrochemistry

An amorphous lithium inserting anode material based on Tin oxide glass was synthesized by salification in solution and its properties on lithium intercalation was investigated by X ray diffraction(XRD), microelectrode voltammetry and charge discharge measurements. The results have shown that this kind of material has considerable electrochemical reversibility toward lithium intercalation deintercalation. The available discharge capacity of the material reaches 430 mA·h/g with charge_discharge efficiency over 90%, showing a great potential for practical use.


Surface Modifications Of Carbon Materials Used As Anode Of Lithium Ion Battery Ⅰ.Influences Of Oxidation And Reduction Pretreatment On Anode Performance, Shuhua Ma, Hanju Guo, Ji Li, Hongze Liang, Xiabin Jing, Fosong Wang Nov 1996

Surface Modifications Of Carbon Materials Used As Anode Of Lithium Ion Battery Ⅰ.Influences Of Oxidation And Reduction Pretreatment On Anode Performance, Shuhua Ma, Hanju Guo, Ji Li, Hongze Liang, Xiabin Jing, Fosong Wang

Journal of Electrochemistry

The influences of the trace oxygen containing functional groups on surface of carbon material on cell performance of carbon anode for lithium ion batteries were studied by means of the pretreament in various oxidant/reductant systems.The results showed that the rich oxygen containing functional groups impaired the cell performance of carbon material anode,and the reduction of these groups in quantity and oxidation degree can increase charge/discharge capacity and improve first charge/discharge efficiency.The reason was also discussed in the light of effects of surface organic groups on decomposition reactivity of electrolyte and formation process of surface passivating film.