Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Cathode

Articles 1 - 10 of 10

Full-Text Articles in Catalysis and Reaction Engineering

Structural Degradation Of Ni-Rich Layered Oxide Cathode For Li-Ion Batteries, Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su Feb 2022

Structural Degradation Of Ni-Rich Layered Oxide Cathode For Li-Ion Batteries, Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su

Journal of Electrochemistry

Nickel(Ni)-rich layered oxide has been regarded as one of the most important cathode materials for the lithium-ion batteries because of its low cost and high energy density. However, the concerns in safety and durability of this compound are still challenging for its further development. On this account, the in-depth understanding in the structural factors determining its capacity attenuation is essential. In this review, we summarize the recent advances on the degradation mechanisms of Ni-rich layered oxide cathode. Progresses in the structure evolution of Ni-rich oxide are carefully combed in terms of inner evolution, surface evolution, and the property under thermal …


Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui Dec 2021

Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui

Journal of Electrochemistry

The sluggish oxygen reduction reaction (ORR) on the cathode of the proton exchange membrane fuel cell (PEMFC) has always been one of the key factors limiting its commercialization. The optimization of the cathode catalytic layer structure plays an important role in improving fuel cell performance and reducing production costs. In this paper, two different catalysts (platinum nanoparticles (Pt-NPs) and platinum nanowires (Pt-NWs)) were prepared by using catalyst coated substrate (CCS) method. By constructing a double-layer catalytic layer structure, we analyzed the effect of different catalytic layer structures by performing a single cell test. The results showed that the dense platinum …


Electricity Generation Of Microbial Fuel Cell Using Stainless Steel Mesh As Cathode, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xuan Jian, Xiu-Li Song, Zhen-Hai Liang Feb 2016

Electricity Generation Of Microbial Fuel Cell Using Stainless Steel Mesh As Cathode, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xuan Jian, Xiu-Li Song, Zhen-Hai Liang

Journal of Electrochemistry

In the present work, a dual-chamber microbial fuel cell (MFC) was constructed with aeration tank sludge as an inoculum, carbon felt as an anode and stainless steel mesh without any modification as a cathode. The influence of the cathode size was investigated in terms of voltage output, power generation and electrochemical impedance. The long-term durability of the stainless steel mesh cathode was also evaluated. Results showed that the stainless steel mesh exhibited satisfactory long-term durability as MFC cathode. When the stainless steel mesh size was 2 × 2 cm2, the maximum output voltage, power density, the internal resistance …


Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun Dec 2013

Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun

Journal of Electrochemistry

The Li-rich Li1.23Ni0.09Co0.12Mn0.56O2 material was synthesized via aqueous solution-evaporation route. The structure and morphology of the material were characterized by means of XRD and SEM. The results indicated that the single particle of the product was polygonal with the size of 330 nm and the structure was layered solid solution with a certain amount of Li2MnO3. Electrochemical tests showed that the first discharge capacity of the Li-rich layered material was 250.8 mAh·g-1 at 0.1C,the capacity retention was 86.5% after 40 cycles. Through in-situ XRD study a …


Synthesis And Electrochemical Properties Of Li(Ni0.5Co0.2Mn0.3)1-2xTiXNbXO2, Yong Tang, Qin-Lin Liao, Xiang-An Guo Aug 2013

Synthesis And Electrochemical Properties Of Li(Ni0.5Co0.2Mn0.3)1-2xTiXNbXO2, Yong Tang, Qin-Lin Liao, Xiang-An Guo

Journal of Electrochemistry

The cathode-active materials of layered Li(Ni0.5Co0.2Mn0.3)1-2xTixNbxO2(x=0, 0.002, 0.005, 0.01, 0.02)composites were synthesized by the thermal treatment of the coprecipitated precursor at 900 oC in air. The effects of Ti-Nb co-dopants on the structural and electrochemical properties of Li(Ni0.5Co0.2Mn0.3)O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical experiments. The results show that the small amounts of Ti-Nb co-dopants in Li(Ni0.5Co0.2Mn0.3)O2significantly decreased the degree of cation mixing in …


An Overview Of Electrode Materials In Microbial Fuel Cells, Su-Qin Ci, Na Wu, Zhen-Hai Wen, Jing-Hong Li Jun 2012

An Overview Of Electrode Materials In Microbial Fuel Cells, Su-Qin Ci, Na Wu, Zhen-Hai Wen, Jing-Hong Li

Journal of Electrochemistry

Microbial fuel cells (MFCs) are devices that can directly convert organic chemical energy into electrical energy with microbial as catalysts. MFCs are a promising bio-electrochemical system with the potential to degrade organic sewage and produce electricity. This article supplies a critical and comprehensive review for the electrode materials concerning about anode and cathode in MFCs, including the fabrications, functional modifications and surface constructions of electrode materials, as well as their applications in MFCs. Additionally, the existing problems of electrode materials in current MFCs have been demonstrated in order to provide the guideline for exploring the next-generation electrode materials for MFCs.


Synthesis And Electrochemical Properties Of Lifeso4f/Graphene Composite As Cathode Material For Lithium-Ion Batteries, Wei Guo, Ya-Xia Yin, Li-Jun Wan, Yu-Guo Guo Apr 2012

Synthesis And Electrochemical Properties Of Lifeso4f/Graphene Composite As Cathode Material For Lithium-Ion Batteries, Wei Guo, Ya-Xia Yin, Li-Jun Wan, Yu-Guo Guo

Journal of Electrochemistry

The LiFeSO4F was successfully synthesized from the reactions of FeSO4?xH2O (x=1, 4, 7) with LiF in tetraethylene glycol media through a facile low temperature method. The structures and microscopic features of the products were characterized by XRD, SEM and TEM. TGA result shows the good thermal stability of the as-prepared LiFeSO4F. No diffraction peaks of the FeSO4 are observed in the as-prepared products with the starting material of either FeSO4?4H2O or FeSO4?7H2O, which should be ascribed to delaying the release of H2O from the hydrated compounds. Cyclic voltammetry (CV) curves and electrochemical impedance spectroscopy (EIS) results prove that the LiFeSO4F/graphene …


Preparation And Characterization Of The Lani0.6fe0.4o3-Δ Cathode For Intermediate Temperature Solid Oxide Fuel Cell, Hang Liu, Bo Huang, Xin-Jian Zhu Nov 2011

Preparation And Characterization Of The Lani0.6fe0.4o3-Δ Cathode For Intermediate Temperature Solid Oxide Fuel Cell, Hang Liu, Bo Huang, Xin-Jian Zhu

Journal of Electrochemistry

The LaNi0.6Fe0.4O3-δ as cathode material for intermediate temperature solid oxide fuel cell was prepared using a combustion synthesis technique. The X-ray diffraction (XRD) pattern showed that the single-phase LaNi0.6Fe0.4O3-δ perovskite could be obtained after heat treatment at 600°C. The TEM and SEM images of the synthesized powders revealed that the grains were 50-100nm. According to the electrochemical impedance spectra (EIS), the polarization resistance of the symmetric cell LaNi0.6Fe0.4O3-δ/ScSZ/LaNi0.6Fe0.4O3-δ sintered at 1050°C was the smallest (0.70Ω?cm2, 0.27Ω?cm2 and 0.12Ω?cm2 at 750°C, 800°C and 850°C, respectively). In the presence of the Fe-Cr alloy interconnection at 750°C, the cathode performance showed that, with …


Nano-Sized Au On Nickel Foam As Cathode Of Alkaline Al-H_2o_2 Semi Fuel Cell, Shu-Li Chen, Bang-An Lu, Yao Liu, Gui-Ling Wang, Dian-Xue Cao May 2010

Nano-Sized Au On Nickel Foam As Cathode Of Alkaline Al-H_2o_2 Semi Fuel Cell, Shu-Li Chen, Bang-An Lu, Yao Liu, Gui-Ling Wang, Dian-Xue Cao

Journal of Electrochemistry

Nano-sized Au particles were deposited on a nickel foam substrate by a fast spontaneous deposition method using AuCl3 as the source of Au. The effects of AuCl3 concentration and deposition time on the size and distribution of Au particles,and the performance of the obtained Au/Ni electrode as the cathode of Al-H2O2 semi fuel cell were investigated. It was found that after the nickel foam was immersed in a 2 mmol·L-1 AuCl3 solution for 60 s,Au particles with diameters smaller than 100 nm were deposited on its surfaces and cover the surface completely. The Al-H2O2 semi fuel cell with Au/Ni cathode …


Preparation And Performance Of Lifeo_2 Coated Nickel Oxide Cathode For Molten Carbonate Fuel Cells, Chun-Ming Wang, Fei Li, Ke-Ao Hu Nov 2002

Preparation And Performance Of Lifeo_2 Coated Nickel Oxide Cathode For Molten Carbonate Fuel Cells, Chun-Ming Wang, Fei Li, Ke-Ao Hu

Journal of Electrochemistry

A novel cathode for molten carbonate fuel cells was prepared by coating LiFeO 2 over the surface of porous NiO cathode by a simple combustion process. The analytical results of X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the LiFeO 2 coating on the surface of NiO particles consisted of nonometer-sized LiFeO 2 grains and sintered tightly with the NiO particles. The LiFeO 2 coating dramatically reduced the contacting area of NiO with the carbonate melts, thus the solubility of NiO in the carbonate melts was decreased. Meanwhile, …