Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Thin films

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 44

Full-Text Articles in Chemical Engineering

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Tunable Luminescence Of Rare Earth Doped Nanophosphors Via Adaptive Optical Properties Of Transition Metals, Pragathi Darapaneni Mar 2020

Tunable Luminescence Of Rare Earth Doped Nanophosphors Via Adaptive Optical Properties Of Transition Metals, Pragathi Darapaneni

LSU Doctoral Dissertations

Over the past decades, the development of light-emitting diodes (LEDs) to produce a wide range of wavelengths has revolutionized the solid-state lighting industry due to their higher energy efficiency and operational lifetimes. These LEDs employ rare earth (RE) doped phosphors due to their stable emission wavelengths which can be amplified when sensitized by other RE dopants (Yb, Ce) or shell layer passivation. However, there has been a push to replace the RE elements in LEDs due to increased socioeconomic issues. One proposed alternative, transition metal (TM) dopants, is typically avoided due to their susceptibility to the local crystal environment resulting …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Structural And Photoluminescence Properties Of Zno Thin Films Deposited By Ultrasonic Spray Pyrolysis, Iwan Sugihartono, Erfan Handoko, Vivi Fauzia, Artoto Arkundato, Lara Permata Sari Apr 2018

Structural And Photoluminescence Properties Of Zno Thin Films Deposited By Ultrasonic Spray Pyrolysis, Iwan Sugihartono, Erfan Handoko, Vivi Fauzia, Artoto Arkundato, Lara Permata Sari

Makara Journal of Technology

Zinc oxide (ZnO) thin films on a silicon (Si) (111) substrate were grown herein using ultrasonic spray pyrolysis at 450 °C with different Zn concentrations. The ZnO thin films had X-ray diffraction patterns of a polycrystalline hexagonal wurtzite structure. The (002) and (101) peak intensities changed under different Zn concentrations. Furthermore, according to Scherer's and Stokes–Wilson equations, the crystallite size and the internal strain of the ZnO thin films in the (002) and (101) peaks changed with the Zn concentration. Optically, the photoluminescence spectra indicated that the ratio of the UV/GB emission of the ZnO thin films was the highest …


Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg Jan 2018

Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg

Electronic Theses and Dissertations

Understanding of fundamental physics of transport properties in thin film nanostructures is crucial for application in spintronic, spin caloritronics and thermoelectric applications. Much of the difficulty in the understanding stems from the measurement itself. In this dissertation I present our thermal isolation platform that is primarily used for detection of thermally induced effects in a wide variety of materials. We can accurately and precisely produce in-plane thermal gradients in these membranes, allowing for thin film measurements on 2-D structures. First, we look at thermoelectric enhancements of doped semiconducting single-walled carbon nanotube thin films. We use the Wiedemann-Franz law to calculate …


Surface-Initiated Polymerizations For The Rapid Sorting Of Rare Cancer Cells, Jacob L. Lilly Jan 2016

Surface-Initiated Polymerizations For The Rapid Sorting Of Rare Cancer Cells, Jacob L. Lilly

Theses and Dissertations--Chemical and Materials Engineering

Cancer metastasis directly accounts for an estimated 90% of all cancer related deaths and is correlated with the presence of malignant cells in systemic circulation. This observed relationship has prompted efforts to develop a fluid biopsy, with the goal of detecting these rare cells in patient peripheral blood as surrogate markers for metastatic disease as a partial replacement or supplement to tissue biopsies. Numerous platforms have been designed, yet these have generally failed to support a reliable fluid biopsy due to poor performance parameters such as low throughput, low purity of enriched antigen positive cells, and insufficiently low detection thresholds …


Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal Apr 2015

Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers Mar 2015

Applications Of High Throughput Screening Tools For Thermoelectric Materials, W. Wong-Ng, H. Joress, J. Martin, Y. Yan, M. Otani, E. Thomas, M. Green, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Mar 2015

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Jason R. Hattrick-Simpers

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Combinatorial Approach To Turbine Bond Coat Discovery, Christopher Metting, Johnathan Bunn, Ellen Underwood, Stephen Smoak, Jason Hattrick-Simpers Mar 2015

Combinatorial Approach To Turbine Bond Coat Discovery, Christopher Metting, Johnathan Bunn, Ellen Underwood, Stephen Smoak, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Mar 2015

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Jason R. Hattrick-Simpers

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason Hattrick-Simpers, I. Takeuchi, E. Heilweil, L. Bendersky Mar 2015

An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason Hattrick-Simpers, I. Takeuchi, E. Heilweil, L. Bendersky

Jason R. Hattrick-Simpers

We have developed an infrared imaging setup enabling in situ infrared images to be acquired, and expanded on capabilities of an infrared imaging as a high-throughput screening technique, determination of a critical thickness of a Pd capping layer which significantly blocks infrared emission from below, enhancement of sensitivity to hydrogenation and dehydrogenation by normalizing raw infrared intensity of a Mg thin film to an inert reference, rapid and systematic screening of hydrogenation and dehydrogenation properties of a Mg–Ni composition spread covered by a thickness gradient Pd capping layer, and detection of formation of a Mg2Si phase in a Mg thin …


Electrochemical Characterization Of Electronically Conductive Polypyrrole On Cyclic Voltammograms, Taewhan Yeu, Ken-Ming Yin, Jose Carbajal, Ralph E. White Mar 2015

Electrochemical Characterization Of Electronically Conductive Polypyrrole On Cyclic Voltammograms, Taewhan Yeu, Ken-Ming Yin, Jose Carbajal, Ralph E. White

Ralph E. White

Experimental and theoretical cyclic voltammograms for electronically conducting polypyrrole film are obtained from the identical conditions and compared to each other to characterize electrochemical behavior of the polymer. A comparison of the simulated and experimental cyclic yoltammograms shows quantitative agreement. The profiles of the dependent variables show that the switching process is governed by the availability of the counter ion to the polypyrrole electrode and the amount of electroactive sites. Sensitivity analysis shows that the double layer effects have more influence in the cyclic voltammograms than the electrokinetic effects.


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace Oct 2013

In Situ Study Of The Role Of Substrate Temperature During Atomic Layer Deposition Of Hfo2 On Inp, H. Dong, Santosh Kc, X. Qin, B. Brennan, S. Mcdonnell, D. Zhernokletov, C. Hinkle, J. Kim, K. Cho, R. Wallace

Faculty Publications

The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO2 on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO2 at different temperatures. An (NH4)2 S treatment is seen to effectively remove native oxides and passivate the InP surfaces …


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria Aug 2013

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria

Anton Geiler

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.


Indium Diffusion Through High-K Dielectrics In High-K/Inp Stacks, H. Dong, W. Cabrera, R. Galatage, Santosh Kc, B. Brennan, X. Qin, S. Mcdonnell, D. Zhernokletov, C. Hinkle, K. Cho, Y. Chabal, R. Wallace Aug 2013

Indium Diffusion Through High-K Dielectrics In High-K/Inp Stacks, H. Dong, W. Cabrera, R. Galatage, Santosh Kc, B. Brennan, X. Qin, S. Mcdonnell, D. Zhernokletov, C. Hinkle, K. Cho, Y. Chabal, R. Wallace

Faculty Publications

Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.High mobility III-V channel materials are contenders to replace Si in semiconductor devices like metal oxide semiconductor filed effect transistors (MOSFETs) for the sub 22 nm technology node.1 Extensive research is being carried out to determine the validity of these III-V materials for use as the channel, in a variety of …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Effects Of Deposition Parameters And Oxygen Addition On Properties Of Sputtered Indium Tin Oxide Films, Badrul Munir, Rachmat Adhi Wibowo, Kim Kyoo Ho Nov 2012

Effects Of Deposition Parameters And Oxygen Addition On Properties Of Sputtered Indium Tin Oxide Films, Badrul Munir, Rachmat Adhi Wibowo, Kim Kyoo Ho

Makara Journal of Technology

Indium tin oxide (ITO) films were sputtered on corning glass substrate. Oxygen admixture and sputtering deposition parameters were optimized to obtain the highest transparency as well as lowest resistivity. Structural, electrical and optical properties of the films were then examined. Increasing deposition rate and film thickness changed the crystallographic orientation from (222) to (400) and (440), as well as higher surface roughness. It was necessary to apply substrate heating during reposition to get films with better crystallinity. The lowest resistivity of 5.36 x 10-4 Ω•cm was obtained at 750 nm film thickness. The films’ resistivity was increased by addition of …


Photocatalytic Reactor Using Tio2 Thin Film On Quartz Tubes, Ram Mahipal Kouda May 2012

Photocatalytic Reactor Using Tio2 Thin Film On Quartz Tubes, Ram Mahipal Kouda

Graduate Theses and Dissertations

Photocatalysis process, as an environmental application is an advanced oxidation process with tremendous potential in the near future. Previously many researchers, have conducted photocatalysis in different reactor configuration using TiO2 slurry and thin film, using a UV light source, the constraints for these reactors are the need for the removal of TiO2 particles at the outlet stream in a slurry reactor and poor environment for the efficient use of TiO2 film using UV light, as the UV light penetration depth in water is about an inch.

Taking all this into consideration, we propose a design for reactor with efficient contact …


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria Apr 2012

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Geiler, Aria Yang, Yongxue He, Katherine Ziemer, Nian Sun, C. Vittoria

Nian X. Sun

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria Apr 2012

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria

Yajie Chen

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.


Proton Diffusion In Nickel Hydroxide Films: Measurement Of The Diffusion Coefficient As A Function Of State Of Charge, Sathya Motupally, Christopher C. Streinz, John W. Weidner Feb 2012

Proton Diffusion In Nickel Hydroxide Films: Measurement Of The Diffusion Coefficient As A Function Of State Of Charge, Sathya Motupally, Christopher C. Streinz, John W. Weidner

John W Weidner

Electrochemical impedance spectroscopy (EIS) was used to measure the solid-state diffusion coefficient of protons in nickel hydroxide films at room temperature as a function of state of charge (SOC). A model for the complex faradaic impedance of the nickel hydroxide active material is presented and used to extract the diffusion coefficient of protons from the EIS data. Impedance data over a range of frequencies can be used to extract a constant diffusion coefficient without the knowledge of the initial mobile proton concentration or the form of the charge-transfer kinetic expression. The proton diffusion coefficient is a strong function of SOC …


Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Nov 2011

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Faculty Publications

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


Plasma-Enhanced Chemical Vapour Deposition On Particles In An Atmospheric Circulating Fluidized Bed, J. Ruud Van Ommen, Elena Abadjieva, Yves L.M. Creyghton May 2010

Plasma-Enhanced Chemical Vapour Deposition On Particles In An Atmospheric Circulating Fluidized Bed, J. Ruud Van Ommen, Elena Abadjieva, Yves L.M. Creyghton

The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering

Plasma-enhanced chemical vapour deposition is an attractive technqiue to provide particles with a thin film. Applying a cold plasma enables us to work with temperature-sensitive materials. Using a CFB with an incorporated volume dielectric barrier discharge reactor we coated 20-30 m CuO particles with a thin SiOx layer.


An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky Jan 2009

An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky

Faculty Publications

We have developed an infrared imaging setup enabling in situ infrared images to be acquired, and expanded on capabilities of an infrared imaging as a high-throughput screening technique, determination of a critical thickness of a Pd capping layer which significantly blocks infrared emission from below, enhancement of sensitivity to hydrogenation and dehydrogenation by normalizing raw infrared intensity of a Mg thin film to an inert reference, rapid and systematic screening of hydrogenation and dehydrogenation properties of a Mg–Ni composition spread covered by a thickness gradient Pd capping layer, and detection of formation of a Mg2Si phase in a …


Modification Of Semi-Metal Oxide And Metal Oxide Powders By Atomic Layer Deposition Of Thin Films, Mark Q. Snyder May 2007

Modification Of Semi-Metal Oxide And Metal Oxide Powders By Atomic Layer Deposition Of Thin Films, Mark Q. Snyder

Electronic Theses and Dissertations

This work describes two methods of modifying, and the subsequent characterizing of, oxide nanopowders. The first method, atomic layer deposition, or ALD, is a series of surface-limited reactions that are repeated to deposit a thin, inorganic film on the surface of the nanopowder. Deposition of a thin film is a useful method to alter the surface properties of a material while retaining its bulk properties. Part of this thesis concerns the understanding of the growth mechanism of thin film titanium nitride (a material known for thermal and chemical stability as well as electronic conductivity) on silica through the ALD process. …


Symmetry Breaking Of In-Plane Order In Confined Copolymer Mesophases, G. E. Stein, Eric W. Cochran, K. Katsov, G. H. Fredrickson, E. J. Kramer, X. Li, J. Wang Apr 2007

Symmetry Breaking Of In-Plane Order In Confined Copolymer Mesophases, G. E. Stein, Eric W. Cochran, K. Katsov, G. H. Fredrickson, E. J. Kramer, X. Li, J. Wang

Eric W. Cochran

Packing of spherical-domain block copolymer mesophases confined to a thin film is investigated as a function of the number of layers n. We find an abrupt transition from hexagonal to orthorhombic in-plane ordering of domains when n is increased from 4 to 5. As n increases further (up to 23 in this study), the symmetry of the orthorhombic phase asymptotically approaches that of the body-centered cubic (110) plane. These results are interpreted in terms of the energetics of competing packings in the bulk and at the film interfaces. Detailed structural and thermodynamic properties are obtained with self-consistent field theory.


Electrodeposited Metal Matrix Nanocomposites As Thin Films And High Aspect Ratio Microstructures For Mems, Alonso Lozano Morales Jan 2006

Electrodeposited Metal Matrix Nanocomposites As Thin Films And High Aspect Ratio Microstructures For Mems, Alonso Lozano Morales

LSU Doctoral Dissertations

The electrodeposition of metal-matrix nanocomposites as thin film and high aspect ratio microstructures (HARM’s) for MicroElectroMechanical Systems (MEMS) components is examined. The effect of -Al2O3 nanopowder on copper reduction from acidic and basic electrolytes is examined with rotating disk electrodes (RDE’s). At pH 0.2, regions of copper inhibition and enhancement are identified in the kinetic regime. Low particle loading (12.5 g/L) results in an inhibited copper rate, while, high particle concentration (60 g/L) does both, inhibits the rate at low overpotentials and accelerates it at higher overpotentials, depending on the electrode rotation rate. At pH 8 the presence of particles …


Heat Transfer In A Thin Liquid Film In The Presence Of An Electric Field, Rama Subba Reddy Gorla, Jorge E. Gatica, Bahman Ghorashi, Pijarn Ineure, Larry W. Byrd May 2004

Heat Transfer In A Thin Liquid Film In The Presence Of An Electric Field, Rama Subba Reddy Gorla, Jorge E. Gatica, Bahman Ghorashi, Pijarn Ineure, Larry W. Byrd

Chemical & Biomedical Engineering Faculty Publications

Heat transfer enhancement in an evaporating thin liquid film utilizing a electric field under isothermal interfacial condition is presented. A new mathematical model subjected to van der Waals attractive forces, capillary pressure, and an electric field is developed to describe the heat transfer enhancement in the evaporating thin liquid film. The effect of the electrostatic field on the curvature of the thin film, evaporative flux, pressure gradient distribution, heat flux, and heat transfer coefficient in the thin film is presented. The results show that applying an electric field can enhance heat transfer in a thin liquid film significantly. in addition, …