Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Composite materials

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 17 of 17

Full-Text Articles in Chemical Engineering

Composite Materials Based On Twaron And Nano Materials, Omnia Hamdy, Remon A. Mankarious, M. A. Radwan, M. A. Sadek, Hany A. Elazab Nov 2019

Composite Materials Based On Twaron And Nano Materials, Omnia Hamdy, Remon A. Mankarious, M. A. Radwan, M. A. Sadek, Hany A. Elazab

Chemical Engineering

This research aims to participate in producing body shield that can overcome pervious drawbacks using behaviour of shear thickening fluid. Initially, the rheological behaviour of silica-polyethylene glycol shear thickening fluid is examined at different concentrations. Then, ballistic fabric samples are impregnated into silica-polyethylene glycol shear thickening fluid at various concentrations of silica and tested using gas gun simulating real ballistic threat. After that, the impact of rubbery hot water pack filled with around 66.67 wt% starch in water is tested using gas gun. Results showed as the concentration of silica increases, the indentation depth in the impregnated fabric decreases which …


Composite Materials Based On Twaron And Nano Materials, Omnia Hamdy, Remon A. Mankarious, M. A. Radwan, M. A. Sadek, Hany A. Elazab Nov 2019

Composite Materials Based On Twaron And Nano Materials, Omnia Hamdy, Remon A. Mankarious, M. A. Radwan, M. A. Sadek, Hany A. Elazab

Chemical and Biochemical Engineering Faculty Research & Creative Works

This research aims to participate in producing body shield that can overcome pervious drawbacks using behavior of shear thickening fluid. Initially, the rheological behavior of silica-polyethylene glycol shear thickening fluid is examined at different concentrations. Then, ballistic fabric samples are impregnated into silica-polyethylene glycol shear thickening fluid at various concentrations of silica and tested using gas gun simulating real ballistic threat. After that, the impact of rubbery hot water pack filled with around 66.67 wt% starch in water is tested using gas gun. Results showed as the concentration of silica increases, the indentation depth in the impregnated fabric decreases which …


Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu Jan 2019

Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu

Williams Honors College, Honors Research Projects

This work investigates the use of two different polyols, xylitol (Xyl) and erythritol (Ery), in conjunction with boron nitride (BN) aerogels, for the purpose of creating thermally conductive composites. While the BN filler in Xyl composites achieved a high anisotropic thermal conductivity of up to 4.53 W/m-K at 18.2 weight percent filler loading, they do not exhibit good phase-change material qualities due to a low solidification enthalpy even at low cooling rates. Alternatively, the BN-Ery composites have shown promising results with a solidification enthalpy of 225.14 J/g and a melting enthalpy of 385.84 J/g at a heat rate of 5 …


Direct Sheet Molding Compound Process (D-Smc), Atieh Motaghi Feb 2018

Direct Sheet Molding Compound Process (D-Smc), Atieh Motaghi

Electronic Thesis and Dissertation Repository

The combination of highly crosslinked resin and long glass fiber reinforcement in direct sheet molding compound (D-SMC) provides the parts with high physical properties and low density suitable for large interior and exterior automotive applications. Different stages of D-SMC process including maturation zone and compression molding are studied using mathematical analysis, numerical simulation and experimental investigations.

An analytical analysis is used to calculate the pressure and velocity in the first section of maturation zone and then the permeability of fiber bundle is calculated by simulation and the agreement between the available empirical equation and simulation was obtained. The flow is …


In Mold Flow Of Long Fibers In Compression Molding Process, Gleb Meirson Dec 2016

In Mold Flow Of Long Fibers In Compression Molding Process, Gleb Meirson

Electronic Thesis and Dissertation Repository

Long Fiber Thermoplastics (LFT) are promising new materials with high physical properties and low density. These high properties are obtained by embedding very long fibers (~100 mm) into a thermoplastic matrix. Such a high fiber length dictates the use of a compression molding process for manufacturing as the length of discontinuous fibers in injection molding is limited by pellet length.

LFT composites are of great interest for the automotive industry. These materials are already used in some interior and exterior car parts such as bumpers, seat structures, door module etc. This research is inspired by the desire to manufacture load …


Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga Jul 2015

Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga

Graduate Theses and Dissertations

The primary objective for this thesis is to contribute to the understanding of the oxide removal process for a corrosion sensing device. The goal for designing such a device is for monitoring corrosion on metallic structures. The sensing material (6.35mm x 1mm discs) of the device is composed of copper (I) oxide particles mixed in some polydimethylsiloxane (PDMS). The PDMS, “housing,” is meant for controlling the oxidation rate through the sensing material. A solvent was used to facilitate the etchant diffusion through the PDMS matrix. Toluene and acetic acid were the ideal solvent and etchant, respectively, for carrying out the …


In Situ Infrared Study Of The Role Of Peg In Stabilizing Silica-Supported Amines For Co2 Capture, Jak Tanthana, Steven Chuang Jul 2014

In Situ Infrared Study Of The Role Of Peg In Stabilizing Silica-Supported Amines For Co2 Capture, Jak Tanthana, Steven Chuang

Steven S.C. Chuang

The CO(2) capture capacity, adsorption mechanism, and degradation characteristics of two sorbents, silica-supported tetraethylenepentamine (TEPA/SiO(2)) and polyethylene-glycol-modified TEPA/SiO(2) (PEG/TEPA/SiO(2)), are studied by diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry. The CO(2) capture capacities of TEPA/SiO(2) and PEG/TEPA/SiO(2) are determined to be 2087 and 1110 micromol CO(2) g(-1) sorbent, respectively. Both sorbents adsorb CO(2) as hydrogen-bonding species, NH(2)--O, and carbamate/carboxylate species. The CO(2) adsorption half-time increases with the number of CO(2) capture cycles. Infrared results suggest that the increased adsorption half-time is a result of diffusion limitation, caused by accumulation of TEPA and PEG species on the surface of …


Theoretical Analysis For Obtaining Physical Properties Of Composite Electrodes, Parthasarathy M. Gomadam, John W. Weidner, Thomas A. Zawodzinski, Andrew P. Saab Feb 2012

Theoretical Analysis For Obtaining Physical Properties Of Composite Electrodes, Parthasarathy M. Gomadam, John W. Weidner, Thomas A. Zawodzinski, Andrew P. Saab

John W Weidner

A theoretical analysis is presented that allows in situ measurements of the physical properties of a composite electrode, namely, the electronic conductivity, the ionic conductivity, the exchange-current density, and the double-layer capacitance. Use is made of the current-voltage responses of the composite electrode to dc and ac polarizations under three different experimental configurations. This analysis allows the physical properties to be obtained even when the various resistances in the composite (e.g., ionic, electronic, and charge-transfer) are of comparable values.


Zsm-5 Coatings On β-Sic Monoliths: Possible New Structured Catalyst For The Methanol-To-Olefins Process, B. Madani, S. Ivanova, B. Louis, Jean-Philippe Tessonnier, M. J. Ledoux, C. Pham-Huu Jan 2007

Zsm-5 Coatings On β-Sic Monoliths: Possible New Structured Catalyst For The Methanol-To-Olefins Process, B. Madani, S. Ivanova, B. Louis, Jean-Philippe Tessonnier, M. J. Ledoux, C. Pham-Huu

Jean-Philippe Tessonnier

Structured zeolite/silicon carbide composites were succesfully synthesized by ZSM-5 coatings deposited on macroscopic â-SiC foams with medium surface area. A homogeneous coverage of the support (30 wt % zeolite) by ZSM-5 crystals, having 1 ím average size, was reached after a double-coating procedure. The ZSM-5/â-SiC composite materials were characterized by BET, XRD, SEM, and H/D exchange methods. 27Al MAS NMR analysis revealed that all aluminum was present in a tetrahedral coordination, thus sitting in the zeolite framework. The existence of a nanoscopic layer of silica and silicon oxycarbide on the surface of the support ensures the strong anchoring of the …


Stable Zeolite/Cellulose Composite Materials And Method Of Preparation, Gustavo F. Larsen Nov 2004

Stable Zeolite/Cellulose Composite Materials And Method Of Preparation, Gustavo F. Larsen

Department of Chemical and Biomolecular Engineering: Patents

Stable cellulosic fiber material for use in forming zeolite/cellulose composites is prepared by suspending loose cellulose fibers in an aqueous solution of sodium hydroxide, potassium hydroxide or sodium silicate, stirring the resulting suspension until it reaches a macroscopically homogenous appearance, heating the resulting mixture at a temperature of 323-423 K until only dry solids remain, contacting the resulting mixture with excess distilled water to remove physically adsorbed or trapped sodium hydroxide, potassium hydroxide or sodium silicate from the fibers, and heating the resulting fiber material at 323-423 K to dry the fiber material. Stable zeolite/cellulose composite material characterized in that …


A Mathematical Model Of Oxide/Carbon Composite Electrode For Supercapacitors, Hansung Kim, Branko N. Popov Jan 2003

A Mathematical Model Of Oxide/Carbon Composite Electrode For Supercapacitors, Hansung Kim, Branko N. Popov

Faculty Publications

A pseudo two-dimensional model is developed for the general application of supercapacitors consisting of an oxide/carbon composite electrode. The model takes into account the diffusion of protons in the oxide particle by employing the method of superposition. RuO2/carbon system is modeled as a specific example. From the simulation data, it is found that the oxide particle size and proton diffusion coefficient have an enormous effect on the performance at high discharge rate due to the limitation of proton transport into RuO2 particles. With increasing carbon ratio, the porosity of electrode increases, which causes the potential drop in …


Theoretical Analysis For Obtaining Physical Properties Of Composite Electrodes, Parthasarathy M. Gomadam, John W. Weidner, Thomas A. Zawodzinski, Andrew P. Saab Jan 2003

Theoretical Analysis For Obtaining Physical Properties Of Composite Electrodes, Parthasarathy M. Gomadam, John W. Weidner, Thomas A. Zawodzinski, Andrew P. Saab

Faculty Publications

A theoretical analysis is presented that allows in situ measurements of the physical properties of a composite electrode, namely, the electronic conductivity, the ionic conductivity, the exchange-current density, and the double-layer capacitance. Use is made of the current-voltage responses of the composite electrode to dc and ac polarizations under three different experimental configurations. This analysis allows the physical properties to be obtained even when the various resistances in the composite (e.g., ionic, electronic, and charge-transfer) are of comparable values.


Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti Jan 2002

Study Of Sn-Coated Graphite As Anode Material For Secondary Lithium-Ion Batteries, Basker Veeraraghavan, Anand Durairajan, Bala Haran, Branko N. Popov, Ronald Guidotti

Faculty Publications

Tin-graphite composites have been developed as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific discharge capacity, coulombic efficiency, rate capability behavior, and cycle life of Sn-C composites has been studied using a variety of electrochemical methods. The amount of tin loading and the heating temperature have a significant effect on the composite performance. The synthesis conditions and Sn loading on graphite have been optimized to obtain the maximum reversible capacity for the composite electrode. Heating the composite converts it from amorphous to crystalline form. Apart from higher capacity, Sn-graphite composites possesses higher coulombic efficiency, …


Synthesis And Characterization Of Hydrous Ruthenium Oxide-Carbon Supercapacitors, Manikandan Ramani, Bala S. Haran, Ralph E. White, Branko N. Popov Jan 2001

Synthesis And Characterization Of Hydrous Ruthenium Oxide-Carbon Supercapacitors, Manikandan Ramani, Bala S. Haran, Ralph E. White, Branko N. Popov

Faculty Publications

It is shown that composite Ru oxide-carbon based supercapacitors possess superior energy and power densities as compared to bare carbon. An electroless deposition process was used to synthesize the ruthenium oxide-carbon composites. Ru is dispersed on the carbon matrix as small particles. The effect of electrochemical oxidation and temperature treatment on the material performance has been studied extensively. Increasing the oxidation temperature reduces the proton transport rate and also increases the degree of crystallinity of the deposits. This adversely affects the performance of the composite. Loading a small amount of Ru oxide (9 wt %) on carbon increases the capacitance …


Morphological Composite Materials Formed From Different Precursors, Ravi F. Saraf Feb 1994

Morphological Composite Materials Formed From Different Precursors, Ravi F. Saraf

Department of Chemical and Biomolecular Engineering: Patents

A method of producing a multiphase polymer is disclosed whereby the phases have the same chemical structure but have different morphological states and thus different properties. This is achieved by forming a mixture of precursors of the polymer, at least one of the precursors having a reaction rate higher than the other precursor or precursors in the mixture. The precursor having the highest reaction rate is then converted to obtain a composite of a polymer and the precursors that are not polymerized. This mixture might also be formed by mixing a soluble polymer with its precursor. The polymer/precursor composite is …


Transport Processes In Random Arrays Of Cylinders. I. Thermal Conduction, Ashok S. Sangani, C. Yao Jan 1988

Transport Processes In Random Arrays Of Cylinders. I. Thermal Conduction, Ashok S. Sangani, C. Yao

Ashok S. Sangani

A numerical method is developed that takes into account the many particle interactions in a rigorous manner to determine the effective thermal conductivity of Km of a composite medium consisting of parallel circular cylinders of thermal conductivity ak suspended in a matrix of conductivity k. Numerical results for Km are presented for a wide rane of a and o, the area fraction of the cylinders, after averaging over several computer-generated random arrays of cylinders. The results obtained via this exact method are compared with those of various approximate analystical methods to assess their utility in predicting Km.


Transport Processes In Random Arrays Of Cylinders. I. Thermal Conduction, Ashok S. Sangani, C. Yao Jan 1988

Transport Processes In Random Arrays Of Cylinders. I. Thermal Conduction, Ashok S. Sangani, C. Yao

Biomedical and Chemical Engineering - All Scholarship

A numerical method is developed that takes into account the many particle interactions in a rigorous manner to determine the effective thermal conductivity of Km of a composite medium consisting of parallel circular cylinders of thermal conductivity ak suspended in a matrix of conductivity k. Numerical results for Km are presented for a wide rane of a and o, the area fraction of the cylinders, after averaging over several computer-generated random arrays of cylinders. The results obtained via this exact method are compared with those of various approximate analystical methods to assess their utility in predicting Km.