Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Chemical Engineering

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Nov 2011

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Faculty Publications

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi Jan 2009

The Effect Of Copt Crystallinity And Grain Texturing On Properties Of Exchange-Coupled Fe/Copt Systems, H. Oguchi, A. Zambano, M. Yu, Jason R. Hattrick-Simpers, D. Banerjee, Y. Liu, Z. L. Wang, J. P. Liu, S. E. Lofland, D. Josell, I. Takeuchi

Faculty Publications

The effect of the crystallinity and the grain texturing of CoPt hard layers on exchange coupled Fe/CoPt soft/hard magnetic systems was studied using gradient thickness multilayer thin films. We have studied the hard layer structures by transmission electron microscopy and x-ray diffraction, and characterized the exchange coupling interaction through magnetization loops obtained by the magneto-optical Kerr effect measurement. We found that exchange coupling strongly depends on the crystalline characteristics of the CoPt hard layer. There is correlation between the mixture of different grain orientations of the CoPt hard layer and coupling efficiency. In particular, interlayer coupling is enhanced when there …


Combinatorial Study Of Ni-Ti-Pt Ternary Metal Gate Electrodes On Hfo2 For The Advanced Gate Stack, K.-S. Chang, M. L. Green, J. Suehle, E. M. Vogel, H. Xiong, Jason R. Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee, M. Gardner Jan 2006

Combinatorial Study Of Ni-Ti-Pt Ternary Metal Gate Electrodes On Hfo2 For The Advanced Gate Stack, K.-S. Chang, M. L. Green, J. Suehle, E. M. Vogel, H. Xiong, Jason R. Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee, M. Gardner

Faculty Publications

The authors have fabricated combinatorial Ni–Ti–Pt ternary metal gate thin film libraries on HfO2 using magnetron co-sputtering to investigate flatband voltage shift (ΔVfb) , work function (Φm) , and leakage current density (JL) variations. A more negative ΔVfb is observed close to the Ti-rich corner than at the Ni- and Pt-rich corners, implying smaller Φm near the Ti-rich corners and higher Φm near the Ni- and Pt-rich corners. In addition, measured JL values can be explained consistently with the observed Φm variations. Combinatorial methodologies prove to be useful …


Interphase Exchange Coupling In Fe/Sm-Co Bilayers With Gradient Fe Thickness, Ming-Hui Yu, Jason R. Hattrick-Simpers, Ichiro Takeuchi, Jing Li, Z. L. Wang, J. P. Liu, S. E. Lofland, Somdev Tyagi, J. W. Freeland, D. Giubertoni, M. Bersani, M. Anderle Jan 2005

Interphase Exchange Coupling In Fe/Sm-Co Bilayers With Gradient Fe Thickness, Ming-Hui Yu, Jason R. Hattrick-Simpers, Ichiro Takeuchi, Jing Li, Z. L. Wang, J. P. Liu, S. E. Lofland, Somdev Tyagi, J. W. Freeland, D. Giubertoni, M. Bersani, M. Anderle

Faculty Publications

We have fabricated Fe∕Sm–Co bilayers with gradient Fe thicknesses in order to systematically study the dependence of exchange coupling on the thickness of the Fe layer. The Fe layer was deposited at two different temperatures (150 and 300°C) to study the effect of deposition temperature on the exchange coupling. Magneto-optical Kerr effect and x-ray magnetic circular dichroism (XMCD) have been employed as nondestructive rapid characterization tools to map the magnetic properties of the gradient samples. Systematic enhancement in exchange coupling between the soft layer and the hard layer is observed as the soft layer thickness is decreased. Separate exchange couplings …


Tunable Multiferroic Properties In Nanocomposite Pbtio3-Cofe2O4 Epitaxial Thin Films, M. Murakami, K.-S. Chang, M. A. Aronova, C.-L. Lin, Ming H. Yu, Jason R. Hattrick-Simpers, M. Wuttig, I. Takeuchi, C. Gao, B. Hu, S. E. Lofland, L. A. Knauss, L. A. Bendersky Jan 2005

Tunable Multiferroic Properties In Nanocomposite Pbtio3-Cofe2O4 Epitaxial Thin Films, M. Murakami, K.-S. Chang, M. A. Aronova, C.-L. Lin, Ming H. Yu, Jason R. Hattrick-Simpers, M. Wuttig, I. Takeuchi, C. Gao, B. Hu, S. E. Lofland, L. A. Knauss, L. A. Bendersky

Faculty Publications

We report on the synthesis of PbTiO3–CoFe2O4 multiferroic nanocomposites and continuous tuning of their ferroelectric and magnetic properties as a function of the average composition on thin-film composition spreads. The highest dielectric constant and nonlinear dielectric signal was observed at (PbTiO3)85–(CoFe2O4)15, where robust magnetism was also observed. Transmission electron microscopy revealed a pancake-shaped epitaxial nanostructure of PbTiO3 on the order of 30 nm embedded in the matrix of CoFe2O4 at this composition. Composition dependent ferroics properties observed here indicate that there …


Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky Jan 2004

Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky

Faculty Publications

We have fabricated a series of composition spreads consisting of ferroelectric BaTiO3 and piezomagnetic CoFe2O4 layers of varying thicknesses modulated at nanometer level in order to explore artificial magnetoelectricthin-film heterostructures. Scanning microwavemicroscopy and scanning superconducting quantum interference device microscopy were used to map the dielectric and magnetic properties as a function of continuously changing average composition across the spreads, respectively. Compositions in the middle of the spreads were found to exhibit ferromagnetism while displaying a dielectric constant as high as ≈120.


Multimode Quantitative Scanning Microwave Microscopy Of In Situ Grown Epitaxial Ba1-XSrXTio3 Composition Spreads, K. S. Chang, M. Aronova, O. Famodu, I. Takeuchi, S. E. Lofland, Jason R. Hattrick-Simpers, H. Chang Jan 2001

Multimode Quantitative Scanning Microwave Microscopy Of In Situ Grown Epitaxial Ba1-XSrXTio3 Composition Spreads, K. S. Chang, M. Aronova, O. Famodu, I. Takeuchi, S. E. Lofland, Jason R. Hattrick-Simpers, H. Chang

Faculty Publications

We have performed variable-temperature multimode quantitative microwavemicroscopy of in situepitaxial Ba1−xSrxTiO3 thin-film composition spreads fabricated on (100) LaA1O3 substrates. Dielectric properties were mapped as a function of continuously varying composition from BaTiO3 to SrTiO3. We have demonstrated nondestructive temperature-dependent dielectric characterization of local thin-film regions. Measurements are simultaneously taken at multiple resonant frequencies of the microscope cavity. The multimode measurements allow frequency dispersion studies. We observe strong composition-dependent dielectric relaxation in Ba1−xSrxTiO3 at microwave frequencies.