Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Chemical Engineering

Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri Jun 2019

Stress Response To Co2 Deprivation By Arabidopsis Thaliana In Plant Cultures, Souvik Banerjee, Oskar Siemianowski, Meiling Liu, Kara R. Lind, Xinchun Tian, Dan Nettleton, Ludovico Cademartiri

Dan Nettleton

After being the standard plant propagation protocol for decades, cultures of Arabidopsis thaliana sealed with Parafilm remain common today out of practicality, habit, or necessity (as in co-cultures with microorganisms). Regardless of concerns over the aeration of these cultures, no investigation has explored the CO2 transport inside these cultures and its effect on the plants. Thereby, it was impossible to assess whether Parafilm-seals used today or in thousands of older papers in the literature constitute a treatment, and whether this treatment could potentially affect the study of other treatments.For the first time we report the CO2concentrations in Parafilm-sealed cultures of …


Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar Nov 2018

Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar

Bilge Nazli Altay

In recent years, traditional printing methods have been integrated to print flexible electronic devices and circuits. Since process requirements for electronics diff er from those for graphic printing, the fundamentals require rediscovery mainly to optimize manufacturing techniques and to find cost reduction methods without compromising functional performance. In addition, alternative inks need to be formulated to increase the variety of functional inks and to pioneer new product developments. In this report, we investigate a thermoplastic-based nickel ink prototype to print electrodes using a screen-printing process. Process fundamentals are explored, and cost reduction methods are addressed by studying …


Removal Of Chlorine From Chlorine-Nitrogen Mixture In A Film Of Liquid Water, Sarwan S. Sandhu Mar 2017

Removal Of Chlorine From Chlorine-Nitrogen Mixture In A Film Of Liquid Water, Sarwan S. Sandhu

Sarwan S. Sandhu

In industry there are many examples of absorption of a gas with or without chemical reaction in the liquid phase. In physical absorption, a particular gaseous component is removed from a gas mixture due to its larger solubility in the liquid phase solvent. The removal of butane and pentane from a refinery gas mixture by a heavy oil in the liquid phase is an example of physical absorption. In absorption with chemical reaction, the gaseous component to be removed transfers across the gas-liquid interface due to a difference in the bulk chemical potentials or concentrations in the two phases. The …


Characterization Of Iron Phthalocyanine As The Cathode Active Material For Lithium-Ion Batteries, Sarwan S. Sandhu, Joseph P. Fellner Mar 2017

Characterization Of Iron Phthalocyanine As The Cathode Active Material For Lithium-Ion Batteries, Sarwan S. Sandhu, Joseph P. Fellner

Sarwan S. Sandhu

The developed thermodynamic functions for the determination of Gibbs free energy, enthalpy, and entropy of formation of solid lithium-iron phthalocyanine (LixFePc) from solid lithium and iron phthalocyanine as a function of x, defined as g-moles of the intercalated lithium per g-mole of iron phthalocyanine, at a fixed set of temperature and pressure conditions are presented. In addition, a proposed expression for the evaluation of lithium diffusion coefficient in solid iron phthalocyanine as a function of both x and temperature, and the experimental results from the ongoing research/development work on the lithium/iron phthalocyanine cells are included.


Carbon Nanoadditives To Enhance Latent Energy Storage Of Phase Change Materials, Shadab Shaikh, Khalid Lafdi, Kevin P. Hallinan Jun 2016

Carbon Nanoadditives To Enhance Latent Energy Storage Of Phase Change Materials, Shadab Shaikh, Khalid Lafdi, Kevin P. Hallinan

Kevin Hallinan

Latent energy storage capacity was analyzed for a system consisting of carbon nanoparticlesdopedphase changematerials (PCMs). Three types of samples were prepared by doping shell wax with single wall carbon nanotubes(SWCNTs), multiwall CNTs, and carbon nanofibers. Differential scanning calorimetry was used to measure the latent heat of fusion. The measured values of latent heat for all the samples showed a good enhancement over the latent heat of pure wax. A maximum enhancement of approximately 13% was observed for the wax/SWCNT composite corresponding to 1% loading of SWCNT. The change in latent heat was modeled by using an approximation for the intermolecular …


Improvement Of Mechanical Properties And Water Stability Of Vegetable Protein Based Plastics, Gowrishankar Srinivasan Sep 2015

Improvement Of Mechanical Properties And Water Stability Of Vegetable Protein Based Plastics, Gowrishankar Srinivasan

Gowrishankar Srinivasan

Bio-renewable bio-degradable plastics are a potential solution to the growing problems of pollution caused by petroleum plastics and dependency on foreign nations for petroleum resources. One possible feed stock for these materials are vegetable proteins, especially from soy bean and corn. These proteins have relatively high molecular weights and have the potential of being processed with standard polymer processing technologies. But some issues that need to be addressed are their water instability (soy protein) and inferior mechanical properties as compared to petroleum derived plastics. In this study, soy protein isolates (SPI) and zein protein was processed with various additives and …


Improvement Of Mechanical Properties And Water Stability Of Vegetable Protein Based Plastics, Gowrishankar Srinivasan May 2015

Improvement Of Mechanical Properties And Water Stability Of Vegetable Protein Based Plastics, Gowrishankar Srinivasan

Gowrishankar Srinivasan

Bio-renewable bio-degradable plastics are a potential solution to the growing problems of pollution caused by petroleum plastics and dependency on foreign nations for petroleum resources. One possible feed stock for these materials are vegetable proteins, especially from soy bean and corn. These proteins have relatively high molecular weights and have the potential of being processed with standard polymer processing technologies. But some issues that need to be addressed are their water instability (soy protein) and inferior mechanical properties as compared to petroleum derived plastics. In this study, soy protein isolates (SPI) and zein protein was processed with various additives and …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Mar 2015

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Jason R. Hattrick-Simpers

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi Mar 2015

Giant Magnetostriction In Annealed Co1-XFeX Thin-Films, Dwight Hunter, Will Osborn, Ke Wang, Nataliya Kazantseva, Jason R. Hattrick-Simpers, Richard Suchoski, Ryota Takahashi, Marcus L. Young, Apurva Mehta, Leonid A. Bendersky, Same E. Lofland, Manfred Wuttig, Ichiro Takeuchi

Jason R. Hattrick-Simpers

Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co1−xFex thin films, effective magnetostriction λeff as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ100 is the dominant component, this number translates to an upper limit of magnetostriction ofλ100≈5λeff >1,000 p.p.m. Microstructural analyses …


Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt Mar 2015

Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt

Jason R. Hattrick-Simpers

A near-field room temperature scanning magnetic probe microscope has been developed using a laminated magnetoelectric sensor. The simple trilayer longitudinal-transverse mode sensor, fabricated using Metglas as the magnetostrictive layer and polyvinylidene fluoride as the piezoelectric layer, shows an ac field sensitivity of 467±3μV∕Oe in the measured frequency range of 200Hz–8kHz. The microscope was used to image a 2mm diameter ring carrying an ac current as low as 10−5A. ac fields as small as 3×10−10T have been detected.


Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky Mar 2015

Exploration Of Artificial Multiferroic Thin-Film Heterostructures Using Composition Spreads, K.-S. Chang, M. A. Aronova, C.-L. Lin, M. Murakami, M.-H. Yu, Jason R. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, L. A. Bendersky

Jason R. Hattrick-Simpers

We have fabricated a series of composition spreads consisting of ferroelectric BaTiO3 and piezomagnetic CoFe2O4 layers of varying thicknesses modulated at nanometer level in order to explore artificial magnetoelectricthin-film heterostructures. Scanning microwavemicroscopy and scanning superconducting quantum interference device microscopy were used to map the dielectric and magnetic properties as a function of continuously changing average composition across the spreads, respectively. Compositions in the middle of the spreads were found to exhibit ferromagnetism while displaying a dielectric constant as high as ≈120.


Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho Sep 2014

Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Ag@CeO2 nanocomposites were synthesized by a biogenic and green approach using electrochemically active biofilms (EABs) as a reducing tool. The as-synthesized Ag@CeO2 nanocomposites were characterized and used in antimicrobial, visible light photocatalytic and photoelectrode studies. The Ag@CeO2 nanocomposites showed effective and efficient bactericidal activities and survival test against Escherichia coli O157:H7, and Pseudomonas aeruginosa. The as-synthesized Ag@CeO2 nanocomposites also exhibited enhanced visible light photocatalytic degradation of 4-nitrophenol and methylene blue than pure CeO2. A photocatalytic investigation showed that the Ag@CeO2 nanocomposites possessed excellent visible light photocatalytic activities compared to pure CeO2. Electrochemical impedance spectroscopy and photocurrent measurements showed that the …


Highly Visible Light Active Ag@Zno Nanocomposites Synthesized By Gel-Combustion Route, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho Aug 2014

Highly Visible Light Active Ag@Zno Nanocomposites Synthesized By Gel-Combustion Route, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Highly visible light active 1% and 3% Ag@ZnO nanocomposites were synthesized via a gel combustion route using citric acid as a fuel. The formation of the nanocomposites with enhanced properties was confirmed using a range of characterization techniques, photocatalysis and photoelectrochemical studies. Compared to the pristine ZnO nanoparticles, the Ag@ZnO nanocomposites exhibited enhanced visible light photocatalytic activity for the degradation of methylene blue and photoelectrochemical response. A mechanism was proposed to account for the photocatalytic activities of the Ag@ZnO nanocomposite that showed the surface plasmon resonance (SPR) of Ag is an effective way of enhancing the visible light photocatalytic activities.


Organic Materials And Organic/Inorganic Heterostructures In Atom Probe Tomography, Derk Joester, Andrew C. Hillier, Yi Zhang, Ty J. Prosa Jun 2014

Organic Materials And Organic/Inorganic Heterostructures In Atom Probe Tomography, Derk Joester, Andrew C. Hillier, Yi Zhang, Ty J. Prosa

Andrew C. Hillier

Nano-scale organic/inorganic interfaces are key to a wide range of materials. In many biominerals, for instance bone or teeth, outstanding fracture toughness and wear resistance can be attributed to buried organic/inorganic interfaces. Organic/inorganic interfaces at very small length scales are becoming increasingly important also in nano and electronic materials. For example, functionalized inorganic nanomaterials have great potential in biomedicine or sensing applications. Thin organic films are used to increase the conductivity of LiFePO4 electrodes in lithium ion batteries, and solid electrode interphases (SEI) form by uncontrolled electrolyte decomposition. Organics play a key role in dye-sensitized solar cells, organic photovoltaics, and …


Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho Apr 2014

Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting graphene/polyaniline (GN@Pani) nanocomposite was prepared by the in-situ oxidative polymerization of aniline in the presence of GN and the surfactant, cetyltrimethylammonium bromide (CTAB). The micellar structure of CTAB assisted both, the formation of GN@Pani tubules and the dispersion of GN. Sheet-like GN was distributed uniformly in the Pani matrix, leading to high electrical conductivity because of the π-π interactions between Pani and GN. Studies of the thermoelectrical behavior using isothermal and cyclic aging techniques showed that GN@Pani possessed a high combination of electrical conductivity and thermal stability, even beyond 150°C. GN@Pani was used as cathode active material in …


Band Gap Engineering Of Ceo2 Nanostructure Using An Electrochemically Active Biofilm For Visible Light Applications, S A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho Apr 2014

Band Gap Engineering Of Ceo2 Nanostructure Using An Electrochemically Active Biofilm For Visible Light Applications, S A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Narrowing the optical band gap of cerium oxide (CeO2) nanostructures is essential for visible light applications. This paper reports a green approach to enhance the visible light photocatalytic activity of pure CeO2 nanostructures (p-CeO2) through defect-induced band gap narrowing using an electrochemically active biofilm (EAB). X-ray diffraction, UV-visible diffuse reflectance/absorption spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the defect-induced band gap narrowing of the CeO2 nanostructure (m-CeO2). The structural, optical, photocatalytic and photoelectrochemical properties also revealed the presence of structural defects caused by the reduction of Ce4+ to …


Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho Jan 2014

Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting nanocomposite film of polyaniline (Pani) with graphene (GN) was prepared by incorporating GN nanoplatelets in Pani matrix, followed by sulfonating it with fuming sulfuric acid. Sheet-like GN nanoplatelets were distributed uniformly in a Pani matrix, leading to high electrical conductivity due to π-π interaction between sulfonated Pani (s-Pani) and GN. Studies of the thermoelectrical behavior and ammonia-sensing behavior on GN@s-Pani showed high DC electrical conductivity retention under ageing conditions as well as excellent reproducible sensing response towards ammonia vapor in contrast to acid-protonated Pani.


Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho Dec 2013

Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results were …


Band Gap Narrowing Of Titanium Dioxide (Tio2) Nanocrystals By Electrochemically Active Biofilm And Their Visible Light Activity, S. Kalathil, Mohammad Mansoob Khan Dr, Sajid A. Ansari, M. H. Cho, J. Lee May 2013

Band Gap Narrowing Of Titanium Dioxide (Tio2) Nanocrystals By Electrochemically Active Biofilm And Their Visible Light Activity, S. Kalathil, Mohammad Mansoob Khan Dr, Sajid A. Ansari, M. H. Cho, J. Lee

Dr. Mohammad Mansoob Khan

We report a simple biogenic-route to narrow the band gap of TiO2 nanocrystals for visible light application by offering a greener method. When an electrochemically active biofilm (EAB) was challenged with a solution of Degussa-TiO2 using sodium acetate as electron donor, greyish blue-colored TiO2 nanocrystals were obtained. Band gap study showed that band gap of the modified TiO2 nanocrystals was significantly reduced (Eg = 2.85 eV) compared to the unmodified white Degussa TiO2 (Eg = 3.10 eV).


Altin Metalurji̇si̇nde Yeni̇ Geli̇şmeler, Fathi Habashi Feb 2013

Altin Metalurji̇si̇nde Yeni̇ Geli̇şmeler, Fathi Habashi

Fathi Habashi

Gold has been extracted from its ores since ancient times. The modern industry, however, was established about hundred years ago when the cyanidation process was invented in 1887. The process was applied successfully for a variety of ores and found wide-spread application in 1970’s for ores containing as low as 1 ppm gold. In the last decade new chemical beneficiation process have been developed to treat ores that are not directly amenable to cyanidation. These involve aqueous oxidation of sulfide minerals containing gold at high temperature and pressure in autoclaves lined with acid-resisting brick.


Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace Mar 2012

Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace

Gursel Alici

The characterization of the dynamic response (including transfer function identification) of trilayer polypyrrole (PPy) type conducting polymer sensors is presented. The sensor was built like a cantilever beam with the free end stimulated through a mechanical lever system, which provided displacement inputs. The voltage generated and current passing between the two outer PPy layers as a result of the input was measured to model the output/input behavior of the sensors based on their experimental current/displacement and voltage/displacement frequency responses. We specifically targeted the low-frequency behavior of the sensor as it is a relatively slowsystem. Experimental transfer function models were generated …


Extractive Metallurgy Of Copper, Fathi Habashi Dec 2011

Extractive Metallurgy Of Copper, Fathi Habashi

Fathi Habashi

A short account on the extractive metallurgy of copper in 410 pages, fully illustrated in colour. It covers its chemistry, history, pyro-, hydro-, and electrometallurgy. Kinetics of leaching of copper ores and a literature guide are also included.


Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace Oct 2011

Response Characterization Of Electroactive Polymers As Mechanical Sensors, G. Alici, Geoffrey M. Spinks, J. D. Madden, Y. Wu, G G. Wallace

Gordon Wallace

The characterization of the dynamic response (including transfer function identification) of trilayer polypyrrole (PPy) type conducting polymer sensors is presented. The sensor was built like a cantilever beam with the free end stimulated through a mechanical lever system, which provided displacement inputs. The voltage generated and current passing between the two outer PPy layers as a result of the input was measured to model the output/input behavior of the sensors based on their experimental current/displacement and voltage/displacement frequency responses. We specifically targeted the low-frequency behavior of the sensor as it is a relatively slowsystem. Experimental transfer function models were generated …


Issues Of Wind Power For Renewable Society Construction At 3-11 Earthquake & Tsunami Striken Areas 被災地からの自然エネルギー社会づくりと風力発電の課題, Masayuki Horio Dec 2010

Issues Of Wind Power For Renewable Society Construction At 3-11 Earthquake & Tsunami Striken Areas 被災地からの自然エネルギー社会づくりと風力発電の課題, Masayuki Horio

Masayuki Horio

No abstract provided.


Beethoven: Patriotism And Social Justice, Fathi Habashi Feb 2010

Beethoven: Patriotism And Social Justice, Fathi Habashi

Fathi Habashi

The great composer Ludwig van Beethoven was not only an exceptional musician but also a man of great ideals who expressed social justice in his music


Mining And Civilization, An Illustrated History, Fathi Habashi Dec 2009

Mining And Civilization, An Illustrated History, Fathi Habashi

Fathi Habashi

Mining and Civilization has been conceived to compliment the author's two books History of Metallurgy and Readings in Historical Metallurgy and to fill a gap in the literature. It is difficult to study the history of metallurgy without studying the history of mining at the same time. Each time the author visits ancient ruins or examines an ancient stone statue he recalls the work of miners who brought the material from a quarry so that the sculptor can create a work of art. History of mining, quarrying, and stone carving is history of civilization.


Researches On Copper. History & Metallurgy, Fathi Habashi Feb 2009

Researches On Copper. History & Metallurgy, Fathi Habashi

Fathi Habashi

The present volume is a collection of selected papers dealing with the extractive metallurgy of copper published by the author and his coworkers. They are reproduced here in a facsimile edition in 240 pages. In addition ten new chapters were specially written in 150 pages. The book is fully illustrated by many colored pictures, flowsheets, and diagrams. It is hoped that it will be useful for students, engineers, chemists, geologists, and for research workers.


Gold. History, Metallurgy, Culture, Fathi Habashi Feb 2009

Gold. History, Metallurgy, Culture, Fathi Habashi

Fathi Habashi

Gold, the first metal used by man, has a special place among metals. It plays an important role in society and in world economics. It caused unprecedented mass migrations on three continents, and at least one war. It was responsible for creating many large cities, is highly prized, has been the inspiration of numerous myths, was the ultimate goal of alchemists, stored in the vaults of banks, widely on display in oriental bazaars, and is generously used in decorating churches and temples. The present volume is composed of two parts: a collection of selected papers published by the author on …


Environmentally Benign Synthesis Of Nanosized Aluminophosphate Enhanced By Microwave Heating, Eng-Poh Ng, Luc Delmotte, Svetlana Mintova Dec 2007

Environmentally Benign Synthesis Of Nanosized Aluminophosphate Enhanced By Microwave Heating, Eng-Poh Ng, Luc Delmotte, Svetlana Mintova

Eng-Poh Ng

The problem addressed with our paper is on the efficient utilization of reacting materials for enhanced syntheses of nanosized aluminophosphate molecular sieve by microwave heating, and decreasing or almost eliminating the related waste. The synthesis procedure deals with the environmental issues concerning the future manufacture re-use and disposal of non-reacted chemicals associated with the production of nanosized aluminophosphate. Nanosized AlPO-18 has been prepared by a multicycle synthesis approach via re-using non-reacted compounds from precursor suspensions with minimal requirement of chemical compensation after recovering of crystalline nanoparticles from each step. This approach is implied as environmentally benign and results in almost …


The Physicochemical Origins Of Coincident Epitaxy In Molecular Overlayers: Lattice Modeling Vs Potential Energy Calculations, Julie A. Last, Daniel E. Hooks, Andrew C. Hillier, Michael D. Ward Dec 1998

The Physicochemical Origins Of Coincident Epitaxy In Molecular Overlayers: Lattice Modeling Vs Potential Energy Calculations, Julie A. Last, Daniel E. Hooks, Andrew C. Hillier, Michael D. Ward

Andrew C. Hillier

The physicochemical basis for epitaxial stabilization of coincident molecular overlayers is illustrated by comparison of optimum overlayer-substrate configurations calculated with potential energy (PE) methods and a simple geometric lattice misfit modeling algorithm (EpiCalc) that neglects molecular orientations and intermolecular potentials. Using â-bis(ethylenedithio)tetrathiafulvalene triiodide (â-ET2I3), perylenetetracarboxylic diimide (PTCDI), and perylenetetracarboxylic dianhydride (PTCDA) overlayers on a graphite substrate as examples, both methods predict identical optimum azimuthal overlayer orientations for each overlayer that also agree with experimental observations. PE calculations for three hypothetical PTCDA overlayers, with identical lattice parameters but different molecular orientations, predict coincidence at the same azimuthal orientation for all overlayers. …