Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 129

Full-Text Articles in Bioresource and Agricultural Engineering

Phylogenetics And Association Analyses Illustrate Substantial Cryptic Diversity Of A Newly Isolated Collection Of Cenococcum Geophilum, Jessica Velez Dec 2020

Phylogenetics And Association Analyses Illustrate Substantial Cryptic Diversity Of A Newly Isolated Collection Of Cenococcum Geophilum, Jessica Velez

Doctoral Dissertations

The ectomycorrhizal fungus Cenococcum geophilum is distributed worldwide across multiple climates and soil types and is known to positively associate with a multitude of plant genera, possibly contributing to plant ability to tolerate inorganic contaminants in a soil environment. New C. geophilum isolates are easily cultured from soils in a laboratory setting, making this an ideal candidate for a model species with which to study multiple plant-fungal effects across a collection of novel isolates. However, C. geophilum is also genetically complex and, at 178Mbp, features one of the largest fungal genomes, necessitating the use of the novel restriction-associated DNA sequencing …


A Comparison Of Methods To Measure Crop Water Use In South Carolina, Andrew C. Ewing Dec 2020

A Comparison Of Methods To Measure Crop Water Use In South Carolina, Andrew C. Ewing

All Theses

The objective of this thesis was to compare cost-effective methods of measuring crop water use, known as evapotranspiration (ET), in South Carolina’s humid climate. The methods analyzed were the surface renewal method (SR), the Eddy Covariance method (EC), large in-field weighing lysimeters, a newly developed pressure differential device (PDD), a Class A Evaporation pan, and the Penman-Monteith equation. In the first chapter, ET measurements obtained by SR were compared to ET measured by EC and weighing lysimeters. For reference, EC and SR track the energy budget to estimate ET, while the weighing lysimeters used in this study are box-like containers …


Ventilation And Recirculation Airway Design For An Autonomous, Climate Controlled, Hydroponic Demonstration Unit, Nicholas Cross Dec 2020

Ventilation And Recirculation Airway Design For An Autonomous, Climate Controlled, Hydroponic Demonstration Unit, Nicholas Cross

Biological and Agricultural Engineering Undergraduate Honors Theses

For this Honors Thesis project, I designed and fabricated a ventilation and recirculation airway sub-system prototype for a hydroponic demonstration unit to be used as an educational demonstration for prospective students, illustrating the capabilities of biological engineers. This thesis focuses on the design of an autonomous air system that toggles between ventilation and recirculation modes based upon sensor output. In the literature review I discuss how ventilation can be used to achieve a targeted climate, the benefits of hands-on projects for education, and the optimum parameters for growing herbs in a hydroponic system.

In the design and fabrication process, every …


Nutrient Recycling From Aqueous For Nitrogen Supplementation In Algae Growth, Alyssa Young Oct 2020

Nutrient Recycling From Aqueous For Nitrogen Supplementation In Algae Growth, Alyssa Young

ELAIA

Algae-derived biofuels have the potential to become a source of renewable liquid fuel via hydrothermal liquefaction. However, for algal biofuels to be economically and environmentally feasible, sustainable nutrient recycling must be achieved. Desmodesmus armatus is a microalga to be used in hydrothermal liquefaction, but it is not yet known if the aqueous product waste from the biofuel production process can be recycled as a nitrogen source to support the growth of subsequent cultures of D. armatus. Here, aqueous product was treated with a Dowex 50WX8 resin for twenty-four hours. Growth media was prepared with treated and untreated aqueous product …


Design Of A Deep Flow Technique Hydroponic System And An Elementary Education Module For Tri Cycle Farms, Cady Rosenbaum May 2020

Design Of A Deep Flow Technique Hydroponic System And An Elementary Education Module For Tri Cycle Farms, Cady Rosenbaum

Biological and Agricultural Engineering Undergraduate Honors Theses

Hydroponics is an agricultural technique in which plants are grown without soil and are instead grown in water systems that include nutrients and other growth-supporting media. Hydroponic systems typically reside inside, so that the system can be fully controlled by the grower by manipulating the temperature and amount of light the plants receive. The benefits of growing plants using hydroponics include: the amount of water used is reduced, it is less labor to grow organic produce with an indoor system, less space used, and it allows for growing food anywhere. Tri Cycle Farms is planning for the construction of a …


Integrated Techno-Economic And Life Cycle Analyses Of Biomass Utilization For Value-Added Bioproducts In The Northeastern United States, Yuxi Wang Jan 2020

Integrated Techno-Economic And Life Cycle Analyses Of Biomass Utilization For Value-Added Bioproducts In The Northeastern United States, Yuxi Wang

Graduate Theses, Dissertations, and Problem Reports

A multi-stage spatial analysis was first conducted to select locations for lignocellulosic biomass-based bioproduct facility, using Geographical Information System (GIS) spatial analysis, multi-criteria analysis ranking algorithm, and social-economic assessment. A case study was developed to determine locations for lignocellulosic biorefineries using feedstocks including forest residue biomass and three energy crops for 13 states in the northeastern United States. In the entire study area, 11.1% of the counties are high-suitable, 48.8% are medium-suitable for biorefinery siting locations. A non-parametric analysis of cross-group surveys showed that preferences on biorefinery siting are homogeneous for experts in academia and industry groups, but people in …


Biotech Connector Brochure Jan 2020

Biotech Connector Brochure

Biotech Connector

The Biotech Connector represents an important opportunity to serve the economic needs of the people of Nebraska through further diversification of Nebraska's economy, and by helping forge and illuminate a pathway to jobs in the biotechnology space for Nebraska students.

The Biotech Connector is 7,700 sq. ft. of well-equipped wet-lab space located on Nebraska Innovation Campus. We provide incubation space and services to bioscience startups and high-growth biotech and research-based businesses.

Wet lab space provides aspiring startups and technology businesses with access to very expensive laboratory equipment that would be outside of the budget of most startups. Lack of access …


Design, Development, And Field Testing A Visnir Integrated Multi-Sensing Soil Penetrometer, Nuwan K. Wijewardane Jul 2019

Design, Development, And Field Testing A Visnir Integrated Multi-Sensing Soil Penetrometer, Nuwan K. Wijewardane

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

The research community in soil science and agriculture lacks a cost-effective and rapid technology for in situ, high resolution vertical soil sensing. Visible and near infra-red (VisNIR) technology has the potential to be used for such sensor development due to its ability to derive multiple soil properties rapidly using a single spectrum. Such efforts must, however, overcome a few challenges: (i) a dry ground soil spectral library that can be used to predict the target soil properties accurately, (ii) a robust design which can acquire high quality VisNIR spectra of soil, (iii) an effective method that can link field intact …


Bio-Desalination Of Brackish And Seawater Using Halophytic Algae, Endalkachew Sahle-Demessie, Ashraf Aly Hassan, Amro El Badawy May 2019

Bio-Desalination Of Brackish And Seawater Using Halophytic Algae, Endalkachew Sahle-Demessie, Ashraf Aly Hassan, Amro El Badawy

Department of Civil and Environmental Engineering: Faculty Publications

Global demand for water is rising. A sustainable and energy efficient approach is needed to desalinate brackish sources for agricultural and municipal water use. Genetic variation among two algae species, Scenedesmus species (S. sp.) and Chlorella vulgaris (C. vulgaris), in their tolerance and uptake of salt (NaCl) was examined for potential bio-desalination of brackish water. Salt-tolerant hyper-accumulators were evaluated in a batch photobioreactors over salinity concentration ranging from 2 g/L to 20 g/L and different nutrient composition for their growth rate and salt-uptake. During algae growth phase, the doubling time varied between 0.63 and 1.81 days for S …


Ecological Co2 Flux Of A Green Roof Ecosystem And A Typical Grassland Ecosystem, Madeline Oxner May 2019

Ecological Co2 Flux Of A Green Roof Ecosystem And A Typical Grassland Ecosystem, Madeline Oxner

Biological and Agricultural Engineering Undergraduate Honors Theses

The Hillside Auditorium Green Roof is a low impact development feature on the University of Arkansas campus. It retains storm water and allows plants living on the roof to take up and transpire the water. Green roofs work to mimic natural ecosystems in urban environments. A key property is ecosystem respiration, which plays a large role in the global carbon cycle and is an important biologic activity indicator. The ecosystem respiration of Hillside Auditorium Green Roof was compared to a typical grassland ecosystem at the University of Arkansas farm to determine how closely the green roof is able to mimic …


Predictive Modeling Of Fate And Transport Of Three Prevalent Contaminants In Midwest Agroecosystem Surface Waters: Nitrate-N, Atrazine, And Escherichia Coli, Samuel Hansen May 2019

Predictive Modeling Of Fate And Transport Of Three Prevalent Contaminants In Midwest Agroecosystem Surface Waters: Nitrate-N, Atrazine, And Escherichia Coli, Samuel Hansen

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

The majority of streams and rivers in the United States (U.S.) are ecologically impaired, or threatened by anthropogenic stressors. Recent reports have found atrazine in drinking water to be associated with increased birth defects and incidences of Non-Hodgkin’s Lymphoma, with higher levels of significance from exposure to both atrazine and nitrate-N. In contrast, recent illnesses from E. coli contaminating vegetables that originated from irrigation water has increased awareness of identifying sources of E. coli entering irrigation reservoirs.

Methods to accurately predict atrazine and E. coli occurrence and potential sources in waterways continue to limit the identifying appropriate and effective prevention …


Primitive Palms: A Density Study On The Impacts Of Harvesting Natural Materials For Construction Purposes On Sumak Allpa Of The Amazon Rainforest, Zachary Bull Apr 2019

Primitive Palms: A Density Study On The Impacts Of Harvesting Natural Materials For Construction Purposes On Sumak Allpa Of The Amazon Rainforest, Zachary Bull

Independent Study Project (ISP) Collection

In an effort to better understand how rural construction techniques affect a surrounding environment, this study combines a density test of the natural building materials used in the construction of a school on Sumak Allpa island of the Orellana Province in the Amazon basin of Ecuador. The focus of the study measures the density of the bamboo species Guadua angustifolia and the Panama hat plant Carludovica palmata on the island while noting a comprehensive compilation of the techniques and materials used in the building process. Using a mix of plots and transects, a comparison of harvested material to remaining material …


Modeling Runoff From Small Agricultural Watersheds In Eastern South Dakota, Bryce Siverling Jan 2019

Modeling Runoff From Small Agricultural Watersheds In Eastern South Dakota, Bryce Siverling

Electronic Theses and Dissertations

The capability to be able to consistently and accurately model any problem has potential time and money savings. The present study aimed to determine if the Natural Resources Conservation Service’s Curve Number (CN) model or the more detailed Soil and Water Assessment Tool (SWAT) Model can consistently and accurately model runoff events from small agricultural fields in Eastern South Dakota. The overall goal was to better understand models used to predict runoff and determine if they can produce accurate estimates of runoff from the watersheds being studied. Runoff measurements were collected from an agricultural field located south of Coleman, South …


Evaluation Of A Solar Powered Variable Flow Tail Water Recovery System For Furrow Irrigation, Vaishali Kandpal Aug 2018

Evaluation Of A Solar Powered Variable Flow Tail Water Recovery System For Furrow Irrigation, Vaishali Kandpal

Graduate Theses and Dissertations

Furrow irrigation is a very common irrigation method for growing crops like soybean, cotton and corn in Arkansas. A major portion of this irrigation water is lost as runoff from the field significantly reducing the irrigation application efficiency. There are various methods of improving irrigation efficiency and one of the methods is using tail-water recovery. A tail-water recovery system utilizes tail-water recovery ditches or pits to collect tail-water which can be re-used for irrigation. However, this method is very labor intensive and has been found to be economically non-feasible for some farms in the past research studies. In order to …


Nutrient Limitation Of Algal Growth In Fishery Lakes, Madeline Ludwig May 2018

Nutrient Limitation Of Algal Growth In Fishery Lakes, Madeline Ludwig

Biological and Agricultural Engineering Undergraduate Honors Theses

This study investigated the effect of nutrient addition on algal growth in three United States Forest Service lakes for fishery management in Arkansas. In fishery managed lakes, fertilization works by manipulating algae growth, a basal food resource in lakes, to promote the growth of the fish population. For the nutrient addition experiments, water was collected from each lake in cubitainers and spiked with nutrients; the treatments included the control, nitrogen (+N), phosphorus (+P), and nitrogen and phosphorus (+N +P). When algal growth was visually observed, a water sample was collected from each cubitainer and analyzed for chlorophyll-α. The results showed …


In-Cage Surface Wetting System For Cooling Poultry In Transport, Ryan Clark May 2018

In-Cage Surface Wetting System For Cooling Poultry In Transport, Ryan Clark

Biological and Agricultural Engineering Undergraduate Honors Theses

Abstract

Poultry health and mortality rates are important considerations in poultry production, as companies can minimize product loss and appeal to a consumer base whose concern for animal welfare continues to grow. Although animal welfare is a consideration for the entire poultry production process, this project focuses on the live-haul phase of the process, specifically during transport from grow houses to processing facilities. During the summer months, broiler chickens being transported can suffer from heat stress that can lead to death. This project consists of the designing and testing of an in-cage surface wetting system to minimize heat stress incidents …


Dynamic Classification Of Moisture Stress Using Canopy And Leaf Temperature Responses To A Step Changes Of Incident Radiation, Erin E. Stevens, George E. Meyer, Ellen T. Paparozzi Apr 2018

Dynamic Classification Of Moisture Stress Using Canopy And Leaf Temperature Responses To A Step Changes Of Incident Radiation, Erin E. Stevens, George E. Meyer, Ellen T. Paparozzi

Honors Theses

Environmental conditions affect plant productivity and understanding how plants respond to drought stress can be measured in different ways. This study focused on measuring leaf response time to induced water stress. Leaf response time to a step increase and step decrease in radiation was computed for four species of well-watered and water-stressed plants in a controlled environment. The canopy temperature was measured with an infrared thermometer and a thermal imaging camera. Thermal images were analyzed to determine the average temperature of a selected single, unobstructed leaf at the top of the canopy. Both the canopy response time and the single …


Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword Aug 2017

Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword

LSU Doctoral Dissertations

The engineering of floating media biofilters has been optimized over the years. The backwashing process has made them more energy and water efficient. Likewise, moving bed bioreactors (MBBR) are gaining interest and popularity because they are relatively affordable to build. Yet, developing countries’ aquaculture production remains largely excluded from the advances made in recirculating aquaculture systems (RAS). This discrepancy is partially driven by the high costs of media such plastic beads and Kaldnes (KMT) media, commonly used in MBBR.

This dissertation evaluates the usability and profitability of rice hulls (RH), an abundant by-product in many developing nations, as a sinking …


Development Of Portable Hyperspectral Imaging Device, Chenxi Li, Youngkee Jung, Iyll-Joon Doh, Euiwon Bae Aug 2017

Development Of Portable Hyperspectral Imaging Device, Chenxi Li, Youngkee Jung, Iyll-Joon Doh, Euiwon Bae

The Summer Undergraduate Research Fellowship (SURF) Symposium

Most of the conventional hyperspectral imaging devices require sophisticated optical components, occupy a large footprint, and requires an initial capital investment for laboratories which mostly suits for laboratories benchtop system. The requirement of shipping the sample and waiting an extended period of time to get the results are the main downsides of this traditional approach. Capitalize in many specific field applications and diagnosis, portable devices provide both convenience and on-site results which are desirable for government agencies and food safety inspectors. This project was aimed to develop a low-cost, portable hyperspectral device for food safety applications. A smartphone was used …


Evaluating Thermal Comfort Of Broiler Chickens During Transportation Using Heat Index And Simulated Electronic Chickens, Kaushik Luthra Aug 2017

Evaluating Thermal Comfort Of Broiler Chickens During Transportation Using Heat Index And Simulated Electronic Chickens, Kaushik Luthra

Graduate Theses and Dissertations

Broilers experience high physiological stress during pre-slaughter transport, especially under extremes of thermal environment. Characterization of thermal environment on the trailer is crucial to identify stress-prone regions during transportation. At the same time, Broilers experience high physiological stress during pre-slaughter transport, especially under extremes of thermal environment. Characterization of thermal environment on the trailer is crucial to identify stress-prone regions during transportation. At the same time, quantification of heat loss of the broilers loaded on trailers is important in understanding the well-being of the broilers. We have developed four electronic chickens (E-chickens) to simulate the sensible heat loss of live …


A Tunable, Three-Dimensional In Vitro Culture Model Of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds, Alek G. Erickson, Taylor D. Laughlin, Sarah Romereim, Catherine Sargus-Patino, Angela K. Pannier, Andrew T. Dudley May 2017

A Tunable, Three-Dimensional In Vitro Culture Model Of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds, Alek G. Erickson, Taylor D. Laughlin, Sarah Romereim, Catherine Sargus-Patino, Angela K. Pannier, Andrew T. Dudley

Biological Systems Engineering: Papers and Publications

Defining the final size and geometry of engineered tissues through precise control of the scalar and vector components of tissue growth is a necessary benchmark for regenerative medicine, but it has proved to be a significant challenge for tissue engineers. The growth plate cartilage that promotes elongation of the long bones is a good model system for studying morphogenetic mechanisms because cartilage is composed of a single cell type, the chondrocyte; chondrocytes are readily maintained in culture; and growth trajectory is predominately in a single vector. In this cartilage, growth is generated via a differentiation program that is spatially and …


Phototherapy Mounting System For Inpatient Rehabilitation, Kelsey Henderson, Elizabeth Fortunato, Jacob Dixon May 2017

Phototherapy Mounting System For Inpatient Rehabilitation, Kelsey Henderson, Elizabeth Fortunato, Jacob Dixon

Chancellor’s Honors Program Projects

No abstract provided.


Energy-Water Reduction And Wastewater Reclamation In A Fluid Milk Processing Facility, Carlyrain Adams, Yulie E. Meneses, Bing Wang, Curtis Weller Apr 2017

Energy-Water Reduction And Wastewater Reclamation In A Fluid Milk Processing Facility, Carlyrain Adams, Yulie E. Meneses, Bing Wang, Curtis Weller

Department of Food Science and Technology: Dissertations, Theses, and Student Research

The energy-water nexus is the inseparable connection linking water and energy. We are faced with a unique opportunity to co-manage these resources, as conservation of one is directly linked to the conservation of its counterpart. Therefore, immediately facing this critical challenge, will lead to tangible impacts on the water and energy crisis our food system is faced with. Determining the role of water and energy in the food industry has proved to be the starting point for reducing the distance between process productivity and resource efficiency. Therefore, this research focuses on determining opportunities for water-energy optimization and wastewater reduction and …


Sugar Versus Lipid For Sustainable Biofuels, Yaşar Demirel Jan 2017

Sugar Versus Lipid For Sustainable Biofuels, Yaşar Demirel

Yaşar Demirel Publications

Introduction

First‐generation biofuels, namely, ethanol and biodiesel, have led to far reaching impact on the peoples’ life world‐wide.[1] However, they inter-fere with the food supply chain and may not be sustainable although some of the biomass are converted to biofuels after those biomasses have met the human needs. Still, the first‐generation–based biofuels have proved that sugar and lipid platforms can be an answer to energy security and global warming concerns without the need for new infrastructure for feedstock delivery as well as for biomass‐to‐biofuel conversion tech-nologies. At the same time, we are discovering and assessing the long‐term environmental im-plications on …


Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu Jan 2017

Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu

Theses and Dissertations--Biosystems and Agricultural Engineering

Development of biomass feedstocks with desirable traits for cost-effective conversion is one of the main focus areas in biofuels research. As suggested by techno-economic analyses, the success of a lignocellulose-based biorefinery largely relies on the utilization of lignin to generate value-added products, i.e. fuels and chemicals. The fate of lignin and its structural/compositional changes during pretreatment have received increasing attention; however, the effect of genetic modification on the fractionation, depolymerization and catalytic upgrading of lignin from genetically engineered plants is not well understood. This study aims to fractionate and characterize the lignin streams from a wild-type and two genetically engineered …


A Comprehensive Dosimetric Study On Switching From A Type-B To A Type-C Dose Algorithm For Modern Lung Sbrt, Christina Zhou, Nathan Bennion, Rongtao Ma, Xiaoying Liang, Shuo Wang, Kristina Zvolanek, Megan Hyun, Xiaobo Li, Sumin Zhou, Weining Zhen, Chi Lin, Andrew Wahl, Dandan Zheng Jan 2017

A Comprehensive Dosimetric Study On Switching From A Type-B To A Type-C Dose Algorithm For Modern Lung Sbrt, Christina Zhou, Nathan Bennion, Rongtao Ma, Xiaoying Liang, Shuo Wang, Kristina Zvolanek, Megan Hyun, Xiaobo Li, Sumin Zhou, Weining Zhen, Chi Lin, Andrew Wahl, Dandan Zheng

Biological Systems Engineering: Papers and Publications

Background: Type-C dose algorithms provide more accurate dosimetry for lung SBRT treatment planning. However, because current dosimetric protocols were developed based on conventional algorithms, its applicability for the new generation algorithms needs to be determined. Previous studies on this issue used small sample sizes and reached discordant conclusions. Our study assessed dose calculation of a Type-C algorithm with current dosimetric protocols in a large patient cohort, in order to demonstrate the dosimetric impacts and necessary treatment planning steps of switching from a Type-B to a Type-C dose algorithm for lung SBRT planning.

Methods: Fifty-two lung SBRT patients were included, each …


An Economic Evaluation Of A Biofuel Supply Chain Utilizing Multiple Feedstocks, Huaqi Zhang Dec 2016

An Economic Evaluation Of A Biofuel Supply Chain Utilizing Multiple Feedstocks, Huaqi Zhang

Masters Theses

Biomass is considered as one potential feedstock for biofuel production. However, the high cost of biomass-to-biofuel supply chain, attributed to biomass’s low bulk density and resulting harvest, storage, and transportation challenges, has been a major hindrance to the success of biomass-based biofuel industry. In addition, the issue of dry matter losses during storage for a feedstock has affected biomass quantity and quality if the feedstock is stored for several months after a single harvest in a year. One potential way to improve the economics of biomass supply chain is to reduce storage need and enhance the utilization of harvest equipment …


Using Elastin-Like Polypeptides For Better Retention Of Biofuels, Yu Hong Wang, Ethan T. Hilman, Kevin V. Solomon Aug 2016

Using Elastin-Like Polypeptides For Better Retention Of Biofuels, Yu Hong Wang, Ethan T. Hilman, Kevin V. Solomon

The Summer Undergraduate Research Fellowship (SURF) Symposium

Elastin-like polypeptides (ELPs) are synthetic molecules that exhibit an interesting property of inverse temperature phase transition; they exist as soluble monomers at low temperatures and form insoluble aggregates at higher temperatures. The transition temperature depends on the pH, salt concentration, and the amino acid sequence of the ELP. This unique and reversible behavior, along with their high biocompatibility has made them a strategic tool for various biomedical applications. However, their hydrophobic properties also make them a prime candidate for biofuel production. As high levels of many commercially important organic solvents are toxic to the cells that make them, ELPs can …


Using A Vnir Spectral Library To Model Soil Carbon And Total Nitrogen Content, Nuwan K. Wijewardane Jun 2016

Using A Vnir Spectral Library To Model Soil Carbon And Total Nitrogen Content, Nuwan K. Wijewardane

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

n-situ soil sensor systems based on visible and near infrared spectroscopy is not yet been effectively used due to inadequate studies to utilize legacy spectral libraries under the field conditions. The performance of such systems is significantly affected by spectral discrepancies created by sample intactness and library differences. In this study, four objectives were devised to obtain directives to address these issues. The first objective was to calibrate and evaluate VNIR models statistically and computationally (i.e. computing resource requirement), using four modeling techniques namely: Partial least squares regression (PLS), Artificial neural networks (ANN), Random forests (RF) and Support vector regression …


Municipal Composting And Organic Waste Diversion: The Case Of Fayetteville, Arkansas, Michael E. Hoppe May 2016

Municipal Composting And Organic Waste Diversion: The Case Of Fayetteville, Arkansas, Michael E. Hoppe

Biological and Agricultural Engineering Undergraduate Honors Theses

It is estimated that 40% of food is wasted in the United States; representing $165 billion in wasted resources. A vast majority of that wasted food is ultimately placed in landfills where it decomposes and releases harmful greenhouse gases (GHGs). In fact, food waste alone is responsible for 23% of annual methane emissions for the US. This has a huge impact on global climate change due to the potency of methane as a greenhouse gas. Currently only 5% of the food waste produced is recovered across the nation. Source reduction would be the best solution to reducing this food waste, …