Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomaterials

3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark Mchargue Jan 2023

3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark Mchargue

Theses and Dissertations--Biomedical Engineering

Currently, there is no standard in vitro model for studying the effects of mechanical stimulation on muscle in type II diabetes. Existing models primarily utilize electrical stimulation, which does not fully recapitulate the effects of exercise. In this thesis, we create a standardized in vitro model of murine muscle that can recapitulate the benefits seen in exercise when mechanically stimulated. Moreover, we show that a type II diabetes environment has similar effects on the muscle in vitro as well as in vivo.


Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter Mar 2022

Optimization Of A Novel Nipam-Based Thermoresponsive Copolymer For Intramuscular Injection As A Myoblast Delivery Vehicle To Combat Peripheral Artery Occlusive Disease, Quentin R. Klueter

Master's Theses

There is a need for a minimally invasive delivery method to enable cell therapies to combat peripheral artery occlusive disease (PAOD) in end stage patients. Myoblasts show promise as a cell mediated therapy but warrant an improved delivery method to increase cell retention in the region of interest because of their adherent nature, relative to previously used BM-MNC’s that are non-adherent. Contemporary issues with achieving successful cell therapies of vasculature can be mainly characterized by the lack of clinical translation from promising animal studies and absence of cell delivery scaffolding. Naturally, polymers have been widely experimented with as grafts to …


Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau Jan 2021

Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau

Honors Theses and Capstones

Hydrogels are widely used tools for tissue engineering and regenerative medicine. Characterized as biofunctional, water-based polymer matrices with tunable mechanical properties, hydrogels have promising but limited applications in biomedical engineering, due to poor and static matrix strength. Here we plan to rectify this issue by introducing a new hydrogel made from a composite of gelatin and silk fibroin crosslinked by microbial transglutaminase (mTG) instantly and beta sheet formation gradually, respectively. This interpenetrating network (IPN) shows enhanced mechanical stiffness and strength compared to gelatin hydrogels, and is capable of encapsulating human cells with high viability demonstrated by the encapsulation of human …


Ultrasonically Responsive Tissue Engineering Scaffolds For The Temporal Control Over Osteo-Inductive Growth Factor Delivery, Catherine Linh May 2017

Ultrasonically Responsive Tissue Engineering Scaffolds For The Temporal Control Over Osteo-Inductive Growth Factor Delivery, Catherine Linh

Senior Honors Projects

In 2012, approximately 6.8 million people in the United States were diagnosed with orthopedic injuries or diseases. Over 500,000 people in the United States underwent bone grafting procedures, which cost 2.5 billion dollars per year and can result in complications. Polymer-based grafting scaffolds can facilitate 3D bone tissue growth in a localized, sustained manner. However, bone regeneration requires the orchestration of a sequence of events. Current scaffolds based on degradation and diffusion cannot provide sequential deliveries. We aimed to design a polymer scaffold that can release one payload diffusively at early time points, followed by ultrasonically triggered release of a …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam May 2015

Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam

Honors Scholar Theses

Hydrogels are useful in wound healing, drug delivery, and tissue engineering applications, but the available methods of injecting them quickly and noninvasively are limited. The medical industry does not yet have access to an all-purpose device that can quickly synthesize hydrogels of different shapes and sizes. Many synthesis procedures that have been developed result in the formation of amorphous hydrogels. While generally useful, amorphous hydrogels exhibit limited capability in tissue engineering applications, especially due to their viscous properties. This endeavor aims to modulate the appropriate gelation parameters, optimize the injection process, and create a prototype that allows for the extrusion …


Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman Jul 2014

Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman

Md Mahmudur Rahman

It is widely accepted that cells behave differently responding to the stiffness of their extracellular matrix (ECM). Such observations were made by culturing cells on hydrogel substrates of tunable stiffness. However, it was recently proposed that cells may sense how strongly they are tethered to ECM, not the local stiffness of ECM. To investigate both hypotheses, we developed a method to fabricate Janus polyacrylamide (PAAM) gels. We squeeze two drops of different concentrations in the Hele-Shaw geometry to generate radial Stokes flow. When the drops coalesce, limited mixing occurs at the interface due to the narrow confinement, and diffusion normal …


Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman Apr 2014

Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

It is widely accepted that cells behave differently responding to the stiffness of their extracellular matrix (ECM). Such observations were made by culturing cells on hydrogel substrates of tunable stiffness. However, it was recently proposed that cells may sense how strongly they are tethered to ECM, not the local stiffness of ECM. To investigate both hypotheses, we developed a method to fabricate Janus polyacrylamide (PAAM) gels. We squeeze two drops of different concentrations in the Hele-Shaw geometry to generate radial Stokes flow. When the drops coalesce, limited mixing occurs at the interface due to the narrow confinement, and diffusion normal …


Surface- And Hydrogel-Mediated Delivery Of Nucleic Acid Nanoparticles, Angela K. Pannier, Tatiana Segura Jan 2013

Surface- And Hydrogel-Mediated Delivery Of Nucleic Acid Nanoparticles, Angela K. Pannier, Tatiana Segura

Biological Systems Engineering: Papers and Publications

Gene expression within a cell population can be directly altered through gene delivery approaches. Traditionally for nonviral delivery, plasmids or siRNA molecules, encoding or targeting the gene of interest, are packaged within nanoparticles. These nanoparticles are then delivered to the media surrounding cells seeded onto tissue culture plastic; this technique is termed bolus delivery. Although bolus delivery is widely utilized to screen for efficient delivery vehicles and to study gene function in vitro, this delivery strategy may not result in efficient gene transfer for all cell types or may not identify those delivery vehicles that will be efficient in vivo. …