Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomaterials

3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark Mchargue Jan 2023

3-Dimensional Muscle Constructs: Using Hydrogels In Order To Model The Effects Of Exercise In Disease Conditions, Mark Mchargue

Theses and Dissertations--Biomedical Engineering

Currently, there is no standard in vitro model for studying the effects of mechanical stimulation on muscle in type II diabetes. Existing models primarily utilize electrical stimulation, which does not fully recapitulate the effects of exercise. In this thesis, we create a standardized in vitro model of murine muscle that can recapitulate the benefits seen in exercise when mechanically stimulated. Moreover, we show that a type II diabetes environment has similar effects on the muscle in vitro as well as in vivo.


Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau Jan 2021

Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau

Honors Theses and Capstones

Hydrogels are widely used tools for tissue engineering and regenerative medicine. Characterized as biofunctional, water-based polymer matrices with tunable mechanical properties, hydrogels have promising but limited applications in biomedical engineering, due to poor and static matrix strength. Here we plan to rectify this issue by introducing a new hydrogel made from a composite of gelatin and silk fibroin crosslinked by microbial transglutaminase (mTG) instantly and beta sheet formation gradually, respectively. This interpenetrating network (IPN) shows enhanced mechanical stiffness and strength compared to gelatin hydrogels, and is capable of encapsulating human cells with high viability demonstrated by the encapsulation of human …


Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen Jul 2016

Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen

Doctoral Dissertations

The tumor extracellular matrix (ECM) plays an important role in facilitating tumor growth and mediating tumor cells' resistance to drugs. However, during drug development, potential chemotherapeutics are screened in plastic plates, which lack relevant ECM physicochemical cues. In order to improve drug development process, this dissertation includes the development of relevant 2D and 3D biomaterial systems that can be used to study carcinoma cell response to drug treatment. A novel poly(ethylene glycol)-phosphorylcholine (PEG-PC) high-throughput biomaterial platform was developed to study how the ECM mechanochemical properties affect cancer cells' response to drug. The PEG-PC biomaterial is optically transparent, has a mechanical …