Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomaterials

Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin Jul 2016

Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

The establishment of in vitro culture models utilizes tissue engineering principles to design functional mimics of in vivo environments in vitro. Advantages for the use of in vitro culture models include ethical alleviation of animal models for therapeutic testing, cost efficiency, and a greater ability to study specific mechanisms via a systematic, ground-up approach to development. In this thesis, alginate hydrogels are utilized in the development of in vitro culture models of porcine embryo elongation and growth plate cartilage development. First, the effect of scaffold and modifications to the scaffold were explored in both projects. In order to modulate …


An Injectable Stem Cell Delivery System For Treatment Of Musculoskeletal Defects, Shirae Leslie Jan 2016

An Injectable Stem Cell Delivery System For Treatment Of Musculoskeletal Defects, Shirae Leslie

Theses and Dissertations

The goal of this research was to develop a system of injectable hydrogels to deliver stem cells to musculoskeletal defects, thereby allowing cells to remain at the treatment site and secrete soluble factors that will facilitate tissue regeneration. First, production parameters for encapsulating cells in microbeads were determined. This involved investigating the effects of osmolytes on alginate microbead properties, and the effects of alginate microbead cell density, alginate microbead density, and effects of osteogenic media on microencapsulated cells. Although cells remained viable in the microbeads, alginate does not readily degrade in vivo for six months. Therefore, a method to incorporate …