Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomaterials

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague Aug 2015

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague

Masters Theses

Photo-crosslinkable polymeric biomaterials have emerged in the field of biomedical research to promote tissue regeneration. For example, scaffolds that can be crosslinked and hardened in situ have been known to make suitable implant alternatives. Since injectable and photo-crosslinkable biomaterials offer the advantage of being minimally invasive, they have emerged to compete with autografts, a current highly invasive method to repair diseased tissue. A series of novel photo-crosslinkable, injectable, and biodegradable nano-hybrid polymers consisting of poly(ε-caprolactone fumarate) (PCLF) and polyhedral oligomeric silsesquioxane (POSS) has been synthesized in our laboratory via polycondensation. To engineer the material properties of the nano-hybrid networks, varied …


Finite Element Analysis Of The Application Of Ultrasound-Generated Acoustic Radiation Force To Biomaterials, Nicole J. Piscopo May 2015

Finite Element Analysis Of The Application Of Ultrasound-Generated Acoustic Radiation Force To Biomaterials, Nicole J. Piscopo

Honors Scholar Theses

While most bone fractures can heal simply by being stabilized, others can take a longer time to rejoin or they could fail to merge back together completely. Numerous studies have shown the positive effects that ultrasonic therapy have had on delayed-union and non-union bone fracture repair but little is known as to what specific biological mechanisms are at play. Ultrasound may be a valuable tool for bone tissue regeneration at these fracture sites using a tissue engineering approach, however, more must be understood about its impact on stimulating tissues to heal before this can be a reality. For that reason, …


Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam May 2015

Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam

Honors Scholar Theses

Hydrogels are useful in wound healing, drug delivery, and tissue engineering applications, but the available methods of injecting them quickly and noninvasively are limited. The medical industry does not yet have access to an all-purpose device that can quickly synthesize hydrogels of different shapes and sizes. Many synthesis procedures that have been developed result in the formation of amorphous hydrogels. While generally useful, amorphous hydrogels exhibit limited capability in tissue engineering applications, especially due to their viscous properties. This endeavor aims to modulate the appropriate gelation parameters, optimize the injection process, and create a prototype that allows for the extrusion …