Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomaterials

Alternative Fixation Of Venous Valves For Bioprosthetic Applications, Makenzie Kapales May 2022

Alternative Fixation Of Venous Valves For Bioprosthetic Applications, Makenzie Kapales

Biomedical Engineering Undergraduate Honors Theses

Venous valve failure allows for the retrograde, or backward, flow of blood into the lower extremities, which leads to Chronic Venous Insufficiency (CVI). CVI infringes upon quality of life through ulceration and can result in death due to Deep Vein Thrombosis (DVT), or blood clots, causing pulmonary embolism. A successful treatment of CVI restores valve function and prevents retrograde blood flow; however, current bioprosthetic venous valves exhibit low patency and high calcification. To improve upon bioprosthetic venous valves and CVI treatment, the University of Arkansas’s Cardiovascular Biomechanics Lab conducts studies with the purpose of comparing the properties and performance of …


Investigating Virus Clearance Via Ph Inactivation During Biomanufacturing, Wenbo Xu May 2019

Investigating Virus Clearance Via Ph Inactivation During Biomanufacturing, Wenbo Xu

Biomedical Engineering Undergraduate Honors Theses

In the processing of biopharmaceuticals, viral clearance and viral safety are important for the development of monoclonal antibodies. Murine xenotropic leukemia virus (XMuLV) is one of the retroviruses, recommended by Food and Drug Administration (FDA) as a model virus for viral clearance via inactivation from therapeutics derived from Chinese hamster ovary cells (CHO). A robust and effective method was investigated to clear or inactivate endogenous viruses by low pH inactivation. The effects of different conductivity and inactivated time on XMuLV clearance was determined. Acetate buffer was prepared with different conductivity, and 2% XMuLV was spiked into acetate buffer. XMuLV virus …


Customization Of Titanate Nanofiber Bioscaffolds, Jared Hopkins May 2016

Customization Of Titanate Nanofiber Bioscaffolds, Jared Hopkins

Biomedical Engineering Undergraduate Honors Theses

In the field of orthopedic devices implant loosening is a major issue resulting in the majority of device failures. These failures result in the need for costly secondary procedures. To reduce device loosening an improved method of tissue anchoring is required. A previously studied titanate nanofiber bioscaffold has been shown to be safely implantable and to contribute to the differentiation of mesenchymal stem cells to osteocytes. Through the customization of both physical and chemical characteristics this titanate nanofiber bioscaffold was fabricated as a potential means to enhance tissue anchoring for use with orthopedic devices. This customization was enabled by acoustic …