Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomaterials

Pneumatospinning Of Collagen Microfibers From Benign Solvents, Seth Polk, Nardos Sori, Nick Thayer, Yas Maghdouri-White, Anna A. Bulysheva, Michael P. Francis Oct 2018

Pneumatospinning Of Collagen Microfibers From Benign Solvents, Seth Polk, Nardos Sori, Nick Thayer, Yas Maghdouri-White, Anna A. Bulysheva, Michael P. Francis

School of Medical Diagnostics & Translational Sciences Faculty Publications

Introduction. Current collagen fiber manufacturing methods for biomedical applications, such as electrospinning and extrusion, have had limited success in clinical translation, partially due to scalability, cost, and complexity challenges. Here we explore an alternative, simplified and scalable collagen fiber formation method, termed 'pneumatospinning,' to generate submicron collagen fibers from benign solvents. Methods and results. Clinical grade type I atelocollagen from calf corium was electrospun or pneumatospun as sheets of aligned and isotropic fibrous scaffolds. Following crosslinking with genipin, the collagen scaffolds were stable in media for over a month. Pneumatospun collagen samples were characterized using Fourier-transform infrared spectroscopy, circular dichroism, …


Effects Of Protein-Coated Nanofibers On Conformation Of Gingival Fibroblast Spheroids: Potential Utility For Connective Tissue Regeneration, Gili Kaufman, Ryan A. Whitescarver, Laiz Nunes, Xavier-Lewis Palmer, Drago Skrtic, Wojtek Tutak Jan 2018

Effects Of Protein-Coated Nanofibers On Conformation Of Gingival Fibroblast Spheroids: Potential Utility For Connective Tissue Regeneration, Gili Kaufman, Ryan A. Whitescarver, Laiz Nunes, Xavier-Lewis Palmer, Drago Skrtic, Wojtek Tutak

Engineering Technology Faculty Publications

Deep wounds in the gingiva caused bytrauma or surgery require a rapid and robust healing of connective tissues. Wepropose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels ofspecific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature ofdense and soft connective tissues. Gingival fibroblast monolayers and3D spheroids were cultured onECMsubstrate and covered with gas-blown poly-(DL-lactide-co-glycolide)(PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed byF-actin staining and confocal microscopy. Thicknesses ofthe cell …


A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin Jan 2012

A Preliminary Study On The Potential Of Manuka Honey And Platelet-Rich Plasma In Wound Healing, Scott A. Sell, Patricia S. Wolfe, Andrew J. Spence, Isaac A. Rodriguez, Jennifer M. Mccoll, Rebecca L. Petrella, Koyal Garg, Jeffery J. Ericksen, Gary L. Bowlin

Nursing Faculty Publications

Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, …


The Use Of An In Vitro 3d Melanoma Model To Predict In Vivo Plasmid Transfection Using Electroporation, Benadette Marrero, Richard Heller Jan 2012

The Use Of An In Vitro 3d Melanoma Model To Predict In Vivo Plasmid Transfection Using Electroporation, Benadette Marrero, Richard Heller

Bioelectrics Publications

A large-scale in vitro 3D tumor model was generated to evaluate gene delivery procedures in vivo. This 3D tumor model consists of a "tissue-like" spheroid that provides a micro-environment supportive of melanoma proliferation, allowing cells to behave similarly to cells in vivo. This functional spheroid measures approximately 1 cm in diameter and can be used to effectively evaluate plasmid transfection when testing various electroporation (EP) electrode applicators. In this study, we identified EP conditions that efficiently transfect green fluorescent protein (GFP) and interleukin 15 (IL-15) plasmids into tumor cells residing in the 3D construct. We found that plasmids …


Destruction Of Α -Synuclein Based Amyloid Fibrils By A Low Temperature Plasma Jet, Erdinc Karakas, Agatha Munyanyi, Lesley Greene, Mounir Laroussi Jan 2010

Destruction Of Α -Synuclein Based Amyloid Fibrils By A Low Temperature Plasma Jet, Erdinc Karakas, Agatha Munyanyi, Lesley Greene, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Amyloid fibrils are ordered beta-sheet aggregates that are associated with a number of neurodegenerative diseases such as Alzheimer and Parkinson. At present, there is no cure for these progressive and debilitating diseases. Here we report initial studies that indicate that low temperature atmospheric pressure plasma can break amyloid fibrils into smaller units in vitro. The plasma was generated by the plasma pencil, a device capable of emitting a long, low temperature plasma plume/jet. This avenue of research may facilitate the development of a plasma-based medical treatment.