Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomaterials

Poly(2-Hydroxyethyl Methacrylate) Hydrogels For Contact Lens Applications–A Review, Kushendarsyah Saptaji, Nurlaely Rohmatul Iza, Sinta Widianingrum, Vania Katherine Mulia, Iwan Setiawan Sep 2021

Poly(2-Hydroxyethyl Methacrylate) Hydrogels For Contact Lens Applications–A Review, Kushendarsyah Saptaji, Nurlaely Rohmatul Iza, Sinta Widianingrum, Vania Katherine Mulia, Iwan Setiawan

Makara Journal of Science

The emerging technology in biomedical engineering requires biocompatible materials, which are also referred to as biomaterials. For a material to be considered biocompatible, it should not interact with human tissues in a harmful way, and vice versa. Various properties of biocompatible materials, such as mechanical and optical properties, have to be considered for different biomedical applications. One of the most popular applications of biomaterials is for contact lenses. Hydrogels, specifically poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels, are among the most popular ones in ophthalmologic applications, especially in soft contact lenses. This paper reviews the use of PHEMA hydrogels as one of the …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts May 2021

Peptoid-Based Microsphere Coatings For Biomaterial Applications, Jesse Leland Roberts

Graduate Theses and Dissertations

Peptoids are peptidomimetic oligomers that predominantly harness similarities to peptides for biomimetic functionality. The incorporation of chiral, aromatic side chains in the peptoid sequence allows for the formation of distinct secondary structures and self-assembly into supramolecular assemblies, including microspheres. Peptoid microspheres can be coated onto substrates for potential use in biosensor technologies, tissue engineering platforms, and drug-delivery systems. They have the potential for use in biomedical applications due to their resistance to proteolytic degradation and low immunogenicity. This dissertation focuses on the physical characteristics and robustness of the peptoid microsphere coatings in various physiological conditions, along with their ability to …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …


Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan Jan 2021

Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan

Theses and Dissertations

Naturally sourced, renewable biomaterials possess outstanding advantages for a multitude of biomedical applications owing to their biodegradability, biocompatibility, and excellent mechanical properties. Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers for the fabrication of functional biodevices. One of the major challenges restricting these materials beyond their traditional usage as passive substrate materials is the ability to combine them with high-resolution fabrication techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D substrates of silk fibroin and chitin using bench-top photolithographic techniques. Research is focused on imparting electrochemical properties to silk proteins using conducting …