Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomaterials

Ph-Sensitive Oxygen Release Microspheres To Enhance Cell Survival In Ischemic Condition, Zhongting Liu Dec 2019

Ph-Sensitive Oxygen Release Microspheres To Enhance Cell Survival In Ischemic Condition, Zhongting Liu

McKelvey School of Engineering Theses & Dissertations

Ischemic diseases such as myocardial infarction, stroke and limb ischemia are severe cardiovascular diseases with high rate of death and millions of people suffered from these diseases. Under ischemic environment, cells die due to deficient supply of nutrient and oxygen. To regenerate ischemic tissues, stem cell therapy is a promising approach because stem cells can differentiate into cells necessary for the regeneration. However, stem cell therapy has limitations. For example, few cells can survive under harsh ischemic environment. To enhance stem cells survival, implantation of oxygen release microspheres to sustained supply cells with oxygen represents an effective strategy. Previously, our …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …


Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop …