Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomaterials

Deswelling Induced Morphological Changes In Dual Ph And Temperature Responsive Ultra-Low Crosslinked Poly (N-Isopropyl Acrylamide)-Co-Acrylic Acid Microgels, Molla R. Islam, Maddie Tumbarello, L. Andrew Lyon Mar 2019

Deswelling Induced Morphological Changes In Dual Ph And Temperature Responsive Ultra-Low Crosslinked Poly (N-Isopropyl Acrylamide)-Co-Acrylic Acid Microgels, Molla R. Islam, Maddie Tumbarello, L. Andrew Lyon

Engineering Faculty Articles and Research

Poly(N-isopropylacrylamide) microgels prepared without exogenous cross-linker are extremely “soft” as a result of their very low cross-linking density, with network connectivity arising only from the self-crosslinking of pNIPAm chains. As a result of this extreme softness, our group and others have taken interest in using these materials in a variety of bioengineering applications, while also pursuing studies of their fundamental properties. Here, we report deswelling triggered structural changes in poly(N-isopropylacrylamide-co-acrylic acid) (ULC10AAc) microgels prepared by precipitation polymerization. Dynamic light scattering suggests that the deswelling of these particles not only depends on the collapse of …


Spatiotemporal Fluorescent Detection Measurements Using Embedded Waveguide Sensors, Mark C. Harrison, Andrea M. Armani Jun 2013

Spatiotemporal Fluorescent Detection Measurements Using Embedded Waveguide Sensors, Mark C. Harrison, Andrea M. Armani

Engineering Faculty Articles and Research

Integrated waveguide biosensors, when combined with fluorescent labeling, have significantly impacted the field of biodetection. While there are numerous types of waveguide sensors, the fundamental excitation method is fairly consistent: the evanescent field of the waveguide excites a fluorophore whose emission is detected, either directly via imaging or indirectly via a decrease in power transfer. Recently, a sensor device was demonstrated which is able to back-couple the emitted light into the waveguide, allowing the signal to be detected directly. However, this previous work focused on the development of an empirical model, leaving many theoretical questions unanswered. Additionally, the results from …