Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomaterials

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings Jun 2018

Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings

Honors Scholar Theses

Observing and designing the in vivo distribution and localization of therapeutic nanoparticles is an essential aspect of developing and understanding novel nanoparticle- based medical treatments. This study investigates novel PEGylated Iodine-based nanoparticles (INPs), an alternate composition to the more widely researched gold nanoparticles (AuNPs), which may help avoid adverse effects associated with AuNPs, such as potential toxicity and skin discoloration, when used in similar applications. Determining the localization of the novel INPs within murine brains containing human glioma U-1242MG cells is critical in assisting the development of radiation dose enhancement therapy for this aggressive cancer. Radiation dose enhancement utilizes the …