Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomaterials

Engineered Nucleic-Acid Binding Intrinsically Disordered Proteins For Biomedical Applications, Telmo Diez Perez Aug 2024

Engineered Nucleic-Acid Binding Intrinsically Disordered Proteins For Biomedical Applications, Telmo Diez Perez

Biomedical Engineering ETDs

This dissertation explores the use of intrinsically disorder proteins (IDPs) in biomedical applications related to the detection and biosensing of nucleic-acid species. We engineer several low critical solution temperature (LCST) nucleic-acid binding elastin-like polypeptides (ELPs) as model IDPs and study their potential in biomedical application via interactions with short single-stranded (ss) DNA, tRNA and viral RNAs. First, we engineer a simple polycationic ELP capable of recruiting DNA on demand in a DNA-protein-rich condensate via LLPS. Moreover, we develop a modified Flory-Huggins theory to quantify the partitioning of DNA and protein upon coacervate formation with and without salts. We then design …


Manufacturing Silicone In-House For The Creation Of Customized Neurovascular Blood Vessel Mimics, Jacob Wilbert Perisho May 2024

Manufacturing Silicone In-House For The Creation Of Customized Neurovascular Blood Vessel Mimics, Jacob Wilbert Perisho

Master's Theses

The Tissue Engineering Lab at California Polytechnic State University San Luis Obispo focuses on creating tissue-engineered Blood Vessel Mimics (BVMs) designed for the preclinical testing of neurovascular devices. These BVMs are composed of silicone models, representing anatomically accurate neurovasculatures, that are sodded with vascular cell types and then cultivated in bioreactors (which maintain physiologic conditions). These silicone models are currently sourced externally from industry partners, so the primary goal of this thesis was to develop the means and methods for the Tissue Engineering Lab to manufacture silicone models in-house.

The first aim of this thesis was to develop and explore …


Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood May 2024

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood

McKelvey School of Engineering Theses & Dissertations

This thesis explores the micromechanical environment induced when cyclically compressing hydrogels via finite element modeling and experimentally on the impact of loading on mesenchymal stem cells (MSCs) when encapsulated withing 3D hydrogel matrices. Degenerative joint diseases, characterized by cartilage degradation, present significant challenges due to cartilage's limited self-repair capacity. Innovative approaches, including stem cell-based therapies and engineered biomaterials, have emerged as promising strategies for cartilage repair and regeneration. This work specifically investigates the calibration of a bioreactor, the uniformity of load response across the hydrogel constructs via finite element modeling (FEM), and the stress response of MSCs subjected to various …


Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu Apr 2024

Low Impedance, Durable, Self-Adhesive Hydrogel Epidermal Electrodes For Electrophysiology Recording, Naiyan Wu

McKelvey School of Engineering Theses & Dissertations

Traditional electrodes used for electrophysiology recording, characterized by their hard, dry, and inanimate nature, are fundamentally mismatched with the soft, moist, and bioactive characteristics of biological tissues, leading to suboptimal skin-electrode interfaces. Hydrogel materials, mirroring the high water content and biocompatibility of biological tissues, emerge as promising candidates for epidermal electronic materials due to their adjustable physicochemical properties. However, challenges such as inadequate electrical conductivity, elevated skin impedance, unreliable adhesion in moist conditions, and performance decline from dehydration have significantly restricted the efficacy and applicability of hydrogel-based electrodes. In this thesis, we report a high-performance hydrogel epidermal electrode patch for …


Bioactive And Electrically Conductive Nanocomposite Bone Biomaterials, Rebeca A. Arambula-Maldonado Apr 2024

Bioactive And Electrically Conductive Nanocomposite Bone Biomaterials, Rebeca A. Arambula-Maldonado

Electronic Thesis and Dissertation Repository

Electrically conductive carbon-based materials are emerging as potential biomaterials for bone tissue engineering. Their incorporation into organic-inorganic nanocomposites mimics the structural composition and electrically conductive nature of bone.

The aim of this research was to design bone biomaterials from gelatin-based polymers, tertiary bioactive glasses (BG) via a sol-gel method, and multiwall carbon nanotubes (MWCNT). The incorporation of calcium into organic-inorganic nanocomposites plays an essential role in the development of bioactive bone biomaterials. Calcium chloride and calcium ethoxide were investigated as calcium sources in gelatin-BG-MWCNT nanocomposites. The resulting surface elemental distribution was homogeneous, but the swelling, degradation and porosity properties of …


Review Of The Potential Use Of Poly (Lactic-Co-Glycolic Acid) As Scaffolds In Bone Tissue Recovery, Kushendarsyah Saptaji, Asriyanti Asriyanti, Nisa Khoiriyah, Laely Muryanti, Iwan Setiawan Mar 2024

Review Of The Potential Use Of Poly (Lactic-Co-Glycolic Acid) As Scaffolds In Bone Tissue Recovery, Kushendarsyah Saptaji, Asriyanti Asriyanti, Nisa Khoiriyah, Laely Muryanti, Iwan Setiawan

Makara Journal of Science

Scaffolds are used as temporary tissue in the human body to expedite healing. Biocompatible materials play a vital role in the field of tissue engineering. Therefore, they can be used to reduce human pain as soon as possible. Polymeric materials are widely used to replicate bone tissue. Poly(lactic-co-glycolic acid) (PLGA) is a potential material for bone tissue scaffolds because of its superior properties, including compatibility with the human body. Accordingly, adding hydroxyapatite and introducing different fabrication methods can enable the production of PLGA scaffolds with good abilities to help cells grow, expand, differentiate, and proliferate. The paper reviews the current …


4d Epr Oximetry Imaging For 4d Bioprinting And Tissue Engineering, Sajad Sarvari Jan 2024

4d Epr Oximetry Imaging For 4d Bioprinting And Tissue Engineering, Sajad Sarvari

Graduate Theses, Dissertations, and Problem Reports

Bioprinting, akin to 3D printing, employs cell-laden hydrogels such as GelMA (Gelatine Methacrylate) and Alginate instead of plastic or resin to create biological structures. The printing process followed by subsequent tissue maturation is known as 4D bioprinting, where the fourth dimension is time. Ensuring adequate and consistent oxygen, O2, supply within 3D bioprint volume over the entire maturation period process is crucial, as even transient hypoxia can impact cellular behavior and phenotypes. However, printing of fully developed vasculature remains an unresolved technical challenge. Several approaches to chemically (peroxides) or biologically (photosynthesis) generate oxygen during bioprint maturation have been proposed. However, …