Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomaterials

Optimized Production And Evaluation Of Cellulose Nanocrystals Derived From Pre-Extracted Kraft Pulp Of Different Wood Species, Gurshagan Kandhola Dec 2019

Optimized Production And Evaluation Of Cellulose Nanocrystals Derived From Pre-Extracted Kraft Pulp Of Different Wood Species, Gurshagan Kandhola

Graduate Theses and Dissertations

Production of nanocellulose from a variety of naturally abundant, locally available and industrially significant wood species provides an opportunity for diversifying the portfolio of traditional pulp and paper industries. The U.S. has a prolific forest products industry with a well-established infrastructure that could be utilized for optimized and customized production of cellulose nanomaterials. However, to achieve that, it is important to a) understand how biorefining strategies for complete fractionation of biomass affect the downstream processing of pulp into nanocellulose, b) maximize the yields of cellulose nanocrystals and nanofibers (CNCs and CNFs) from pretreated raw materials, and c) evaluate if the …


Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc Sep 2019

Formation Of A Vascular Regenerative Microenvironment Within Implantable Human Decellularized Adipose Tissue Bioscaffolds, Christopher Leclerc

Electronic Thesis and Dissertation Repository

Cellular therapies targeted at stimulating therapeutic angiogenesis in individuals with critical limb ischemia (CLI) have been under intense investigation. Hematopoietic progenitor cells (HPC) derived from umbilical cord blood have been previously shown to support limb revascularization in animal models of CLI, despite limited cell survival at the site of ischemia. This study attempted to improve HPC survival after transplantation and prolong pro-angiogenic function using human decellularized adipose tissue (hDAT) as a novel cell delivery platform. Compared to HPC conventionally grown on tissue-cultured plastic, hDAT scaffolds were shown to promote viability and proliferation of seeded HPC, and had cell- instructive effects …


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts Aug 2019

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Graduate Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent degradation …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Establishment Of 3-D Human Colorectal Cancer Spheroids, India Barnett Apr 2019

Establishment Of 3-D Human Colorectal Cancer Spheroids, India Barnett

Kansas State University Undergraduate Research Conference

Three-Dimensional (3D) cell culture plays an important role in cancer biology by providing a life-like microenvironment as a model for drug discovery and treatment. Hydrogels, like many other 3D scaffolds, demonstrate a unique property as matrices for 3D cell culture. The goal of this project is to establish a 3D cell culture for colorectal cancer and apply this 3D model to drug testing. Colorectal cancer is one of the most common cancers in the United States with an early detection rate of 39%. Previously, 2D cell culture of human colorectal cancer cells, SW480, was used to determine the efficacy of …


The Role Of The Mechanical Environment On Cd117+ Endothelial Cell Angiogenesis, Patrick Link Jan 2019

The Role Of The Mechanical Environment On Cd117+ Endothelial Cell Angiogenesis, Patrick Link

Theses and Dissertations

Angiogenesis is a complex process coordinating cell migration, proliferation, and lumen formation. Changes to the microenvironment regulate angiogenesis through mechanotransduction and cytokine signals. In pulmonary hypertension, something in the process becomes abnormal, resulting in changes to the microenvironment and the formation of a glomerulus of dysfunctional capillaries, called a plexiform lesion. Endothelial cells, expressing CD117 (CD117+ EC clones) increase in the plexiform lesions of pulmonary hypertension, independent of pro-angiogenic VEGF signaling. We hypothesize that the mechanical environment and the macromolecular composition of the extracellular matrix, both, contribute to the aberrant angiogenesis. When we changed the mechanical environment, we changed the …