Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomaterials

A Single Cell Pair Mechanical Interrogation Platform To Study Cell-Cell Adhesion Mechanics, Amir Monemianesfahani Aug 2021

A Single Cell Pair Mechanical Interrogation Platform To Study Cell-Cell Adhesion Mechanics, Amir Monemianesfahani

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. Perturbations of the cell-cell adhesion structure or relatedmechanotransduction pathways lead to pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been used to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. The current techniques, however, have limitations on their ability to measure the cell-cell adhesion force directly and quantitatively. These methods use a monolayer of cells, which makes it impossible to quantify the forces within a single cell-cell adhesion complex. Other methods using single cells or cell …


Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David May 2021

Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David

Biomedical Engineering Undergraduate Honors Theses

Despite significant progress in the field of peripheral nerve repair, clinical success is still limited, leaving millions to suffer from peripheral neuropathy with billions spent every year for treatment. Nerve repair methods that are capable of maximizing the regenerative properties of peripheral nerves are greatly desired in the field of medical science. This research aims to fill the gap between modern methods and the future of nerve repair by creating type-I collagen scaffolds with aligned degradation pores that will assist and nurture nerves growing through them. This is achieved by incorporating adipose stem cells into type-I collagen hydrogels and aligning …


Development Of A Biaxial Testing System For Research Of Soft Tissue Biomechanics Using Laboratory Models, Tariq Shameen Jan 2021

Development Of A Biaxial Testing System For Research Of Soft Tissue Biomechanics Using Laboratory Models, Tariq Shameen

Dissertations and Theses

The rupture of the cap tissue layer of a fibroatheroma in human coronary vessels is considered the key event leading to the formation of a thrombus and myocardial infarction, resulting in more than half a million deaths in the US every year. In this study, we are interested in investigating the biomechanics of different elastomer materials that can be used as laboratory models to replicate coronary arteries’ ultimate tensile stress (0.2 - 2.08 MPa). To this end, we developed a biomechanical testing system that allows us to characterize the material properties of small samples with high accuracy and precision. We …


Pandemic Healthcare: Face Shield Modification, Nathan Giunto, Sefra Manos, Brandon Ross, Catherine Seno, Catherine Howell Jan 2021

Pandemic Healthcare: Face Shield Modification, Nathan Giunto, Sefra Manos, Brandon Ross, Catherine Seno, Catherine Howell

Williams Honors College, Honors Research Projects

Current face shields used in home and institutional healthcare settings create hardships for their wearers, which makes normal work routines more difficult. Recent mandates require healthcare workers to wear both surgical masks as well as plastic face shields when tending to patients. Unfortunately, the majority of face shields have been designed for hospital settings, which does not address the specific requirements for in-home therapist use. Some of the issues include their restrictive size, tendency to fog, susceptibility to glare, and sterilization and re-use issues. Our team proposes to design a face shield for homecare occupational therapists that addresses their unique …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau Jan 2021

Injectable Gelatin-Silk Fibroin Composite Hydrogels For In Situ Cell Encapsulation, Ryann D. Boudreau

Honors Theses and Capstones

Hydrogels are widely used tools for tissue engineering and regenerative medicine. Characterized as biofunctional, water-based polymer matrices with tunable mechanical properties, hydrogels have promising but limited applications in biomedical engineering, due to poor and static matrix strength. Here we plan to rectify this issue by introducing a new hydrogel made from a composite of gelatin and silk fibroin crosslinked by microbial transglutaminase (mTG) instantly and beta sheet formation gradually, respectively. This interpenetrating network (IPN) shows enhanced mechanical stiffness and strength compared to gelatin hydrogels, and is capable of encapsulating human cells with high viability demonstrated by the encapsulation of human …