Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomaterials

Bubble Lab Exercise, Peter Beltramo Jan 2020

Bubble Lab Exercise, Peter Beltramo

Science and Engineering Saturday Seminars

The cell membrane is a ubiquitous component in mammalian cells which control many vital biological functions. It consists of a phospholipid bilayer with embedded protein molecules which serve to transport molecules between the interior and exterior of the cell. Understanding what makes cell membranes so important and how they function requires concepts from physics, chemistry, and of course biology, but it is difficult to learn and conceptualize the structure and function of membranes due to their nanoscopic size and dynamic nature which can’t be properly appreciated in a static textbook. This activity draws analogies between the chemistry and structure of …


Biotech Connector Brochure Jan 2020

Biotech Connector Brochure

Biotech Connector

The Biotech Connector represents an important opportunity to serve the economic needs of the people of Nebraska through further diversification of Nebraska's economy, and by helping forge and illuminate a pathway to jobs in the biotechnology space for Nebraska students.

The Biotech Connector is 7,700 sq. ft. of well-equipped wet-lab space located on Nebraska Innovation Campus. We provide incubation space and services to bioscience startups and high-growth biotech and research-based businesses.

Wet lab space provides aspiring startups and technology businesses with access to very expensive laboratory equipment that would be outside of the budget of most startups. Lack of access …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Incorporation Of Fibrin Into A Collagen–Glycosaminoglycan Matrix Results In A Scaffold With Improved Mechanical Properties And Enhanced Capacity To Resist Cell-Mediated Contraction, Claire Brougham, Tanya J. Levingstone, Stefan Jockenhoevel, Thomas C. Flanagan, Fergal J. O'Brien Oct 2015

Incorporation Of Fibrin Into A Collagen–Glycosaminoglycan Matrix Results In A Scaffold With Improved Mechanical Properties And Enhanced Capacity To Resist Cell-Mediated Contraction, Claire Brougham, Tanya J. Levingstone, Stefan Jockenhoevel, Thomas C. Flanagan, Fergal J. O'Brien

Articles

Fibrin has many uses as a tissue engineering scaffold, however many in vivo studies have shown a reduction in function resulting from the susceptibility of fibrin to cell-mediated contraction. The overall aim of the present study was to develop and characterise a reinforced natural scaffold using fibrin, collagen and glycosaminoglycan (FCG), and to examine the cell-mediated contraction of this scaffold in comparison to fibrin gels. Through the use of an injection loading technique, a homogenous FCG scaffold was developed. Mechanical testing showed a sixfold increase in compressive modulus and a thirtyfold increase in tensile modulus of fibrin when reinforced with …


Desulfovibrio Desulfuricans G20 Tetraheme Cytochrome Structure At 1.5 A˚ And Cytochrome Interaction With Metal Complexes, Mrunalini Pattarkine, J J. Tanner, C A. Bottoms, Y H. Lee, Judy D. Wall May 2006

Desulfovibrio Desulfuricans G20 Tetraheme Cytochrome Structure At 1.5 A˚ And Cytochrome Interaction With Metal Complexes, Mrunalini Pattarkine, J J. Tanner, C A. Bottoms, Y H. Lee, Judy D. Wall

Faculty Works

The structure of the type I tetraheme cytochrome c3 from Desulfovibrio desulfuricans G20 was determined to 1.5 A˚ by X-ray crystallography. In addition to the oxidized form, the structure of the molybdate-bound form of the protein was determined from oxidized crystals soaked in sodium molybdate. Only small structural shifts were obtained with metal binding, consistent with the remarkable structural stability of this protein. In vitro experiments with pure cytochrome showed that molybdate could oxidize the reduced cytochrome, although not as rapidly as U(VI) present as uranyl acetate. Alterations in the overall conformation and thermostability of the metal-oxidized protein were investigated …


Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh May 2001

Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh

Faculty Works

The formation of composite films of double-stranded DNA and cationic lipid molecules (octadecylamine, ODA) and the hybridization of complementary single-stranded DNA molecules in such composite films are demonstrated. The immobilization of DNA is accomplished by simple immersion of a thermally evaporated ODA film in the DNA solution at close to physiological pH. The entrapment of the DNA molecules in the cationic lipid film is dominated by attractive electrostatic interaction between the negatively charged phosphate backbone of the DNA molecules and the protonated amine molecules in the thermally evaporated film and has been quantified using quartz crystal microgravimetry (QCM). Fluorescence studies …


Cationic Surfactant Mediated Hybridization And Hydrophobization Of Dna Molecules At The Liquid/Liquid Interface And Their Phase Transfer, Murali Sastry, Ashavani Kumar, Mrunalini Pattarkine, Vidya Ramakrishnan, Krishna N. Ganesh Jan 2001

Cationic Surfactant Mediated Hybridization And Hydrophobization Of Dna Molecules At The Liquid/Liquid Interface And Their Phase Transfer, Murali Sastry, Ashavani Kumar, Mrunalini Pattarkine, Vidya Ramakrishnan, Krishna N. Ganesh

Faculty Works

Hybridization of complementary oligonucleotides mediated by a cationic surfactant at the water/hexane interface leads to hydrophobic, double-helical DNA which may be readily phase transferred to the organic phase and cast into thin films on solid substrates.


Hybridization Of Dna By Sequential Immobilization Of Oligonucleotides At The Air-Water Interface, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Anand Gole, K. N. Ganesh Nov 2000

Hybridization Of Dna By Sequential Immobilization Of Oligonucleotides At The Air-Water Interface, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Anand Gole, K. N. Ganesh

Faculty Works

The hybridization of DNA by sequential electrostatic and hydrogen-bonding immobilization of single-stranded complementary oligonucleotides at the air-water interface with cationic Langmuir monolayers is demonstrated. The complexation of the single-stranded DNA molecules with octadecylamine (ODA) Langmuir monolayers was followed in time by monitoring the pressure-area isotherms. A large (and slow) expansion of the ODA monolayer was observed during each stage of complexation in the following sequence: primary single-stranded DNA followed by complementary single-stranded DNA followed by the intercalator, ethidium bromide. Langmuir-Blodgett (LB) films of the ODA-DNA complex were formed on different substrates and characterized using quartz-crystal microgravimetry (QCM), Fourier transform infrared …


Anion Induced Blue To Purple Transition In Bacteriorhodopsin, Mrunalini Pattarkine, Anil K. Singh Jun 1996

Anion Induced Blue To Purple Transition In Bacteriorhodopsin, Mrunalini Pattarkine, Anil K. Singh

Faculty Works

Purple membrane (PM, λ" role="presentation">λmax" role="presentation">max 570 nm) of H. halobium on treatment with sulphuric acid changes its colour to blue (λ" role="presentation">λmax" role="presentation">max 608 nm). The purple chromophore can be regenerated from the blue chromophore by exogeneous addition of anions such as CI−" role="presentation">− and HPO42−" role="presentation">2−4. Chloride ion is found to be more effective than the dibasic phosphate ion in regenerating the purple chromophore. Nevertheless, one thing common to the anion regeneration is that both CI−" role="presentation">− and HPO42−" role="presentation">2−4 show marked pH effect. At pH 1.0 the efficiency of …