Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biological Engineering

Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan Oct 2018

Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan

Biological Engineering Faculty Publications

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, …


Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon Aug 2018

Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microbes can be used to produce valuable drugs, chemicals, and biofuels, but their potential has not been fully realized due to low production yields. To improve biomanufacturing processes and yield, we are developing novel, transcriptional regulators using biosynthesis technology in order to improve cellular health and overall production. Our regulator contains elastin-like polypeptides (ELPs), which make ideal sensors since they exhibit a sharp, inverse phase transition to indicators of cell health such as intracellular pH and ionic strength, and external stimuli such as temperature. We hypothesize that ELP can be fused to transcription factors to control expression of target genes. …


Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah Jul 2018

Whole Cell Cross-Linking To Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs, Bart C. Weimer, Poyin Chen, Prerak T. Desai, Dong Chen, Jigna Shah

Biological Engineering Faculty Publications

Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host–microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In …


Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings May 2018

Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings

Biological and Agricultural Engineering Undergraduate Honors Theses

Methanogenesis is the biological production of methane. Only anaerobic archaea known as methanogens are capable of such a metabolic feat. They have strict living conditions and substrate sources which determine their rate of metabolism. This is of particular importance from a greenhouse gas reduction perspective or biogas capturing perspective. One of the best ways to optimize methanogen methane production is via genetic manipulation. The current procedures are timely though, therefore a faster cloning processes should be developed. The objective of this study was to optimize a premade genetic transformation kit known as the Gibson Kit. The Gibson Kit was supposed …