Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Sonoporation-Mediated Loading Of Trehalose In Cells For Cryopreservation., Charles W. Shaffer Iv, David F. Grimm, Michael A. Menze, Jonathan A. Kopechek Sep 2020

Sonoporation-Mediated Loading Of Trehalose In Cells For Cryopreservation., Charles W. Shaffer Iv, David F. Grimm, Michael A. Menze, Jonathan A. Kopechek

Undergraduate Research Events

Trehalose, a non-reducing disaccharide, is present in many microorganisms and metazoans. In these organisms, trehalose acts as a stress protectant and helps preserve lipid membranes of cells during states of desiccation and freezing. Trehalose is required on both sides of the cell membrane to achieve a significant cryoprotective effect. Specific loading methods for trehalose are required since this sugar is impermeant to mammalian cells. Trehalose loading in mammalian cells has been achieved by fluid-phase endocytosis and genetic modification for the expression of trehalose transporters, however cryoprotective outcomes are unable to compete with established methods of cryopreservation for mammalian cells. Sonoporation …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …