Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

A Simple, Realistic Walled Phantom For Intravascular And Intracardiac Applications., Hareem Nisar, John Moore, Roberta Piazza, Efthymios Maneas, Elvis C S Chen, Terry M Peters Sep 2020

A Simple, Realistic Walled Phantom For Intravascular And Intracardiac Applications., Hareem Nisar, John Moore, Roberta Piazza, Efthymios Maneas, Elvis C S Chen, Terry M Peters

Robarts Imaging Publications

PURPOSE: This work aims to develop a simple, anatomically and haptically realistic vascular phantom, compatible with intravascular and intracardiac ultrasound. The low-cost, dual-layered phantom bridges the gap between traditional wall-only and wall-less phantoms by showing both the vessel wall and surrounding tissue in ultrasound imaging. This phantom can better assist clinical tool training, testing of intravascular devices, blood flow studies, and validation of algorithms for intravascular and intracardiac surgical systems.

METHODS: Polyvinyl alcohol cryogel (PVA-c) incorporating a scattering agent was used to obtain vessel and tissue-mimicking materials. Our specific design targeted the inferior vena cava and renal bifurcations which were …


Dynamic Light Scattering Optical Coherence Tomography To Probe Motion Of Subcellular Scatterers., Nico J J Arezza, Marjan Razani, Michael C Kolios Feb 2019

Dynamic Light Scattering Optical Coherence Tomography To Probe Motion Of Subcellular Scatterers., Nico J J Arezza, Marjan Razani, Michael C Kolios

Medical Biophysics Publications

Optical coherence tomography (OCT) is used to provide anatomical information of biological systems but can also provide functional information by characterizing the motion of intracellular structures. Dynamic light scattering OCT was performed on intact, control MCF-7 breast cancer cells and cells either treated with paclitaxel to induce apoptosis or deprived of nutrients to induce oncosis. Autocorrelations (ACs) of the temporal fluctuations of OCT intensity signals demonstrate a significant decrease in decorrelation time after 24 h in both the paclitaxel-treated and nutrient-deprived cell groups but no significant differences between the two groups. The acquired ACs were then used as input for …


Light Scattering Measured With Spatial Frequency Domain Imaging Can Predict Stromal Versus Epithelial Proportions In Surgically Resected Breast Tissue, David M. Mcclatchy, Elizabeth J. Rizzo, Wendy A. Wells, Candice C. Black, Keith D. Paulsen, Stephen C. Kanick, Brian W. Pogue Sep 2018

Light Scattering Measured With Spatial Frequency Domain Imaging Can Predict Stromal Versus Epithelial Proportions In Surgically Resected Breast Tissue, David M. Mcclatchy, Elizabeth J. Rizzo, Wendy A. Wells, Candice C. Black, Keith D. Paulsen, Stephen C. Kanick, Brian W. Pogue

Dartmouth Scholarship

This study aims to determine if light scatter parameters measured with spatial frequency domain imaging (SFDI) can accurately predict stromal, epithelial, and adipose fractions in freshly resected, unstained human breast specimens. An explicit model was developed to predict stromal, epithelial, and adipose fractions as a function of light scattering parameters, which was validated against a quantitative analysis of digitized histology slides for N  =  31 specimens using leave-one-out cross-fold validation. Specimen mean stromal, epithelial, and adipose volume fractions predicted from light scattering parameters strongly correlated with those calculated from digitized histology slides (r  =  0.90, 0.77, and 0.91, respectively, p-value× …


Performance Assessment Of Diffuse Optical Spectroscopic Imaging Instruments In A 2-Year Multicenter Breast Cancer Trial, Anais Leproux, Thomas D.O. Sullivan, Albert E. Cerussi, Amanda Durkin, Brian Hill, Nola M. Hylton, Arjun G. Yodh, Stefan A. Carp, David A. Boas, Shudong Jiang, Keith D. Paulsen, Brian W. Pogue, Darren M. Roblyr, Wei T. Yang, Bruce J. Tromberg Aug 2017

Performance Assessment Of Diffuse Optical Spectroscopic Imaging Instruments In A 2-Year Multicenter Breast Cancer Trial, Anais Leproux, Thomas D.O. Sullivan, Albert E. Cerussi, Amanda Durkin, Brian Hill, Nola M. Hylton, Arjun G. Yodh, Stefan A. Carp, David A. Boas, Shudong Jiang, Keith D. Paulsen, Brian W. Pogue, Darren M. Roblyr, Wei T. Yang, Bruce J. Tromberg

Dartmouth Scholarship

We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received …


Scattering Correction Methods Of Infrared Spectra Using Graphics Processing Units, Asher Imtiaz May 2015

Scattering Correction Methods Of Infrared Spectra Using Graphics Processing Units, Asher Imtiaz

Theses and Dissertations

Fourier transform infrared (FTIR) microspectroscopy has been used for many years as a technique that provides distinctive structure-specific infrared spectra for a wide range of materials (e.g., biological (tissues, cells, bacteria, viruses), polymers, energy related, composites, minerals). The mid-infrared radiation can strongly scatter from distinct particles, with diameters ranging between 2-20 micrometer. Transmission measurements of samples (approximately 100 micrometers x 100 micrometers x 10 micrometers) with distinct particles. will be dominated by this scattering (Mie scattering). The scattering distorts the measured spectra, and the absorption spectra appear different from pure absorbance spectra. This thesis presents development and implementation of two …


Sub-Diffusive Scattering Parameter Maps Recovered Using Wide-Field High-Frequency Structured Light Imaging, Stephen C. Kanick, David M. Mcclatchy, Venkataramanan Krishnaswamy, Jonathan T. Elliott, Keith D. Paulsen, Brian W. Pogue Sep 2014

Sub-Diffusive Scattering Parameter Maps Recovered Using Wide-Field High-Frequency Structured Light Imaging, Stephen C. Kanick, David M. Mcclatchy, Venkataramanan Krishnaswamy, Jonathan T. Elliott, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns (fx) can be used to quantitatively map the anisotropic scattering phase function distribution (P(θs)) in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance (Rd) in terms of dimensionless scattering (μ′sf−1x) and γ, a metric of the first two moments of the P(θs) distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of Rd spectra sampled at multiple f …


Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar Apr 2014

Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar

Electronic Thesis and Dissertation Repository

In this thesis, Waveguide Evanescent Field Scattering (WEFS) microscopy is developed as a non-invasive, label-free live cell imaging technique. This new high-contrast imaging can be employed to study the first hundred nanometers from the surface as it utilizes the evanescent field of a waveguide as the illumination source. Previously, waveguide evanescent field fluorescence (WEFF) microscopy was developed as a fluorescence imaging technique comparable to the total internal reflection fluorescent (TIRF) microscopy. Both the WEFF and WEFS technique utilizes the same fundamental concepts except in WEFS microscopy imaging is accomplished without the application of any fluorescent labeling. In this work, bacterial …


Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen Oct 2003

Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Near-infrared spectroscopic tomography was used to measure the properties of 24 mammographically normal breasts to quantify whole-breast absorption and scattering spectra and to evaluate which tissue composition characteristics can be determined from these spectra. The absorption spectrum of breast tissue allows quantification of (i) total hemoglobin concentration, (ii) hemoglobin oxygen saturation, and (iii) water concentration, whereas the scattering spectrum provides information about the size and number density of cellular components and structural matrix elements. These property data were tested for correlation to demographic information, including subject age, body mass index, breast size, and radiographic …