Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani Aug 2021

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani

Electronic Theses and Dissertations

Until recently, study and correction of motor or gait functions required costly sensors and measurement setups (e.g., optical motion capture systems) which were only available in laboratories or clinical environments. However, due to (1) the growing availability and affordability of inertial measurement units (IMUs) with high accuracy, and (2) progress in wireless, high bandwidth, and energy-efficient networking technologies such as Bluetooth Low Energy (BLE), it is now possible to measure and provide feedback in real-time for biomechanical parameters outside of those specialized settings. To enable gait training without an expert who can provide verbal feedback, augmented feedback, which is divided …


Walking Kinematics In Young Children With Limb Loss Using Early Versus Traditional Prosthetic Knee Prescription Protocols, Mark Daniel Geil, Zahra Safaeepour, Brian Giavedoni, Colleen Coulter Apr 2020

Walking Kinematics In Young Children With Limb Loss Using Early Versus Traditional Prosthetic Knee Prescription Protocols, Mark Daniel Geil, Zahra Safaeepour, Brian Giavedoni, Colleen Coulter

Faculty and Research Publications

The traditional treatment protocol for young children with congenital or acquired amputations at or proximal to the knee prescribes a prosthesis without a working knee joint, based in part on the assumption that a child learning to walk cannot properly utilize a passively flexing prosthetic knee component. An alternative to this Traditional Knee (TK) protocol is an “Early Knee” (EK) protocol, which prescribes an articulating prosthetic knee in the child’s first prosthesis, during development of crawling and transitioning into and out of upright positions. To date, no study has compared samples of children with limb loss at or proximal to …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Vicon Motion System, Arezoo Eshraghi Mar 2014

Vicon Motion System, Arezoo Eshraghi

AREZOO ESHRAGHI

No abstract provided.


P&O, Arezoo Eshraghi Dec 2013

P&O, Arezoo Eshraghi

AREZOO ESHRAGHI

No abstract provided.


Hir Prosthetics Research Group Achievements: Road To Success, Arezoo Eshraghi May 2013

Hir Prosthetics Research Group Achievements: Road To Success, Arezoo Eshraghi

AREZOO ESHRAGHI

No abstract provided.


Magnetic Suspension System, Arezoo Eshraghi May 2013

Magnetic Suspension System, Arezoo Eshraghi

AREZOO ESHRAGHI

No abstract provided.


O&P, Arezoo Eshraghi Oct 2012

O&P, Arezoo Eshraghi

AREZOO ESHRAGHI

No abstract provided.


Upper Limb Orthoses, Arezoo Eshraghi Oct 2012

Upper Limb Orthoses, Arezoo Eshraghi

AREZOO ESHRAGHI

No abstract provided.