Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Porous Scaffold And Soft Hydrogel Composite For Biomedical Applications, Matthew Dicerbo Jun 2021

Porous Scaffold And Soft Hydrogel Composite For Biomedical Applications, Matthew Dicerbo

Theses and Dissertations

Biophysical signals including stiffness and dimensionality influence a myriad of stem cell behaviors including morphology, mechanosensing, and differentiation. 2D stiff environments cause increased cellular spreading and induce osteogenic differentiation whereas 3D soft environments favor rounder cell morphologies attributed to a chondrogenic phenotype. The goal of this study is to create a composite that integrates these divergent biophysical signals within one system. This composite consists of a stiff and porous polycaprolactone (PCL) backbone that provides mechanical stiffness and a 2D environment. The PCL backbone is then perfused with mesenchymal stem cells (MSCs) and a soft methacrylated gelatin (GelMe) hydrogel to provide …


Multifactorial Media Analysis Via Design Of Experiment For Type Ii Collagen In Primary Rabbit Chondrocytes, Javier A. Velez Toro Jan 2021

Multifactorial Media Analysis Via Design Of Experiment For Type Ii Collagen In Primary Rabbit Chondrocytes, Javier A. Velez Toro

Honors Undergraduate Theses

Osteoarthritis is a prevalent disease that affects the articular cartilage of the joints. Millions of people suffer worldwide and it is a major cause of disability in the United States. Current research for treatments of osteoarthritis are studying tissue-engineered cartilage in vitro generated by articular chondrocytes. A challenge faced in vitro for cartilage tissue engineering is the failure of chondrocytes to produce adequate expression of type II collagen. Surprisingly, the media commonly used in vitro lacks 14 vitamins and minerals present in the physiological environment of chondrocytes. Therefore, studying the interactions between micronutrients and chondrocytes may help in potentially increasing …