Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoparticles

PDF

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 74

Full-Text Articles in Biomedical Engineering and Bioengineering

Surface-Functionalized Silica Nanocarriers For Mitigating Water Stress In Wheat And Benefiting The Root Microbiome, Anthony Cartwright Aug 2023

Surface-Functionalized Silica Nanocarriers For Mitigating Water Stress In Wheat And Benefiting The Root Microbiome, Anthony Cartwright

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Changes in climate and shifting patterns of drought threaten the growth of important cash crops like wheat. The element silicon serves as a plant nutrient and shows promise for strengthening wheat against drought while remaining safe to both the crop and the positive bacteria that grow on its roots. Silicon can be added to wheat in the form of silicon-dioxide nanoparticles featuring protective coatings made from plant-beneficial nutrients. These nanoparticles can be engineered with high surface area or porous structures allowing them to be loaded with additional nutrients that can be delivered to crops. In a laboratory setting, such nanoparticles …


Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen May 2023

Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen

Electronic Theses and Dissertations

Glioblastoma (GBM) brain tumors are highly aggressive gliomas due to genetic and cellular heterogeneity. Current GBM treatment consists of surgical resection of the tumor combined with radio- or chemo-therapies. While these treatments have increased the life expectancy for GBM patients up to 20 months, they have had little effect on the 5-year survival rate. The complex cellular and genetic composition of the tumor makes current treatments less effective long term. One approach to developing more effective GBM treatments is to customize nanoparticle-based drug delivery systems that can directly target the aberrant gene expression patterns within a particular GBM tumor. Delivery …


Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna Apr 2023

Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna

Electrical Engineering Theses

This thesis presents a study on the optical characteristics of hollow-core photonic crystal fibers (HC-PCFs) with a band gap cladding structure and their applications in optical fiber sensing. This 800B HC-PCF exhibited excellent optical properties and has a flexible structure, which makes them suitable for a wide range of industrial applications. Finite element simulations and structural optimization designs were conducted using the surface plasmon resonance (SPR) technique to determine the optimal performance parameters of the 800B HC-PCF. The fiber was further modified using the SPR technique to improve its practical detection capabilities. The performance of the modified fiber was observed …


Polyethyleneimine Shell Nucleic Acid Nanostructures From Gold Nanoparticle Template For Chemotherapeutic Drug Delivery, Brendan Guy Rucci Jan 2023

Polyethyleneimine Shell Nucleic Acid Nanostructures From Gold Nanoparticle Template For Chemotherapeutic Drug Delivery, Brendan Guy Rucci

Theses and Dissertations

The next generation of anticancer agents will emerge from rationally designed nanostructured materials. This work involved the synthesis and characterization of novel hollow DNA-conjugated gold nanoparticles (DNA-AuNPs) for controlled drug delivery. Polyethyleneimine (PEI) was bound to citrate-capped AuNPs, forming polymer-shell nanoparticles. Dissolution of the gold core via iodine formed hollow core polymeric nanoparticles (HCPPs) and a high density of DNA (85 molecules/particle) containing daunorubicin was conjugated. Particles were spherical with an average diameter of 105.7±17.3 nm and zeta potential of 20.4±3.54 mV. We hypothesize the DNA backbone electrostatically condensed to the primary amines on the surface of the particle toroidally, …


The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling Jan 2023

The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling

Theses and Dissertations

Treatments for acute respiratory distress syndrome (ARDS) are still unavailable and the prevalence of the disease has only increased due to the Covid-19 pandemic. Mechanical ventilation regiments are still utilized to support declining lung function, but they also contribute to lung damage and increase the risk of bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSC secretome and the extracellular matrix (ECM) into a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta-potential, and mass spectrometry …


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


Chitosan Oligosaccharides As A Nanomaterial Platform: Biological Properties And Applications In The Biomedical And Pharmaceutical Fields, Muhamad Alif Razi Dec 2022

Chitosan Oligosaccharides As A Nanomaterial Platform: Biological Properties And Applications In The Biomedical And Pharmaceutical Fields, Muhamad Alif Razi

Makara Journal of Science

Chitosan oligosaccharides (COS) have been introduced as marine-derived biomaterials with potential health benefits and good water solubility properties. This study presents an overview of the promising nanomaterial platform for biomedical and pharmaceutical applications of COS. The health benefits of COS, primarily their antioxidant and protective effects, anti-inflammatory activity, antidiabetic properties, and cholesterol-lowering effects are discussed. Furthermore, the promising recent articles on specific topics such as drug delivery systems and nanobiomaterials, are highlighted


Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul Dec 2022

Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul

Chemical and Biochemical Engineering Publications

No abstract provided.


Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji Jul 2022

Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Following traumatic brain injury (TBI), excess reactive oxygen species (ROS) and other free radicals are released, inducing the cascade of secondary injury that exacerbate the outcomes of TBI. Antioxidant nanoparticles (ANPs) have shown promising outcomes in reducing the progression of TBI, which may be due to the higher accumulation and retention of ANPs in the injured brain. However, there is limited knowledge of: 1) antioxidant activities needed in TBI treatment, 2) correlation between longer retention, bioavailability, and target engagement with antioxidant treatments, and 3) sexual dimorphism to ANP treatments.

This dissertation assesses multiple ANPs with various scavenging activities and durations …


Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley Jun 2022

Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley

Theses and Dissertations

The inherent chemical, mechanical, and structural properties of nucleic acids make them ideal candidates for the formulation of tunable, personalized drug nanocarriers. However, none so far have exploited these properties for the controlled release of therapeutic drugs. In this dissertation, a biomimetic approach to controlling drug release is exhibited by specifically manipulating the architecture of novel, DNA nanoparticles to take advantage of drug binding mechanisms of action. Rationally designed DNA strands were immobilized on gold surfaces via a terminal thiol modification. Immobilized monomers can be manipulated to form distinct monolayer architectures including flat, folded, coiled, or stretched structures. Increasing the …


Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal Jun 2022

Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal

Michigan Tech Publications

Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the development of next-generation antimicrobials. The rapid emergence of multi-drug resistant microbes, superbugs and mutated strains of viruses have fueled the search for new and alternate antimicrobial agents with broad-spectrum biocidal activity. Biomaterials, ranging from macroscopic polymers, proteins, and peptides to nanoscale materials such as nanoparticles, nanotubes and nanosheets have emerged as effective antimicrobials. An extensive body of research has established the antibacterial and antiviral efficiencies of different types of biomaterials. …


Mechanical Properties Of Nanoparticles In The Drug Delivery Kinetics, Kaivon Assani, Amy Neidhard-Doll, Tarun Goswami May 2022

Mechanical Properties Of Nanoparticles In The Drug Delivery Kinetics, Kaivon Assani, Amy Neidhard-Doll, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

Nanoparticle formulation is a recently developed drug delivery technology with enhanced targeting potential. Nanoparticles encapsulate the drug of choice and delivers it to the target via a targeting molecules (ex. antigen) located on the nanoparticle surface. Nanoparticles can even be targeted to deeply penetrating tissue and can be modeled to deliver drugs through the blood brain barrier. These advancements are providing better disease targeting such as to cancer and Alzheimer’s. Various polymers can be manufactured into nanoparticles. The polymers examined in this paper are polycaprolactone (PCL), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and poly(glycolic acid) (PGA). The purpose of this …


Nanoparticulate Carriers For Drug Delivery, Samantha Lokelani Crossen, Tarun Goswami Apr 2022

Nanoparticulate Carriers For Drug Delivery, Samantha Lokelani Crossen, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

Drug delivery with nanoparticulate carriers is a new and upcoming research area that is making major changes within the pharmaceutical industry. Nanoparticulate carriers are discussed, particularly, engineered nanoparticulate carriers used as drug delivery systems for targeted delivery. Nanoparticulate carriers that are used for drug delivery systems include polymers, micelles, dendrimers, liposomes, ceramics, metals, and various forms of biological materials. The properties of these nanoparticulate carriers are very advantageous for targeted drug delivery and result in efficient drug accumulation at the targeted area of interest, reduced drug toxicity, reduced systemic side effects, and more efficient use of the drug overall. Nanoparticlulate …


Nanoparticles For Targeted Drug Delivery To Cancer Stem Cells: A Review Of Recent Advances, Yavuz Nuri Ertas, Keyvan Abedi Dorcheh, Ali Akbari, Esmaiel Jabbari Jul 2021

Nanoparticles For Targeted Drug Delivery To Cancer Stem Cells: A Review Of Recent Advances, Yavuz Nuri Ertas, Keyvan Abedi Dorcheh, Ali Akbari, Esmaiel Jabbari

Faculty Publications

Cancer stem cells (CSCs) are a subpopulation of cells that can initiate, self-renew, and sustain tumor growth. CSCs are responsible for tumor metastasis, recurrence, and drug resistance in cancer therapy. CSCs reside within a niche maintained by multiple unique factors in the microenvironment. These factors include hypoxia, excessive levels of angiogenesis, a change of mitochondrial activity from aerobic aspiration to aerobic glycolysis, an upregulated expression of CSC biomarkers and stem cell signaling, and an elevated synthesis of the cytochromes P450 family of enzymes responsible for drug clearance. Antibodies and ligands targeting the unique factors that maintain the niche are utilized …


Conductive Agnw/Tempo Cnf Thin Film, David Flewelling May 2021

Conductive Agnw/Tempo Cnf Thin Film, David Flewelling

Honors College

Cellulose is a strong, readily available biologically sourced polymer with a wide potential for applications in many fields. Its high degree of biodegradability makes it an excellent candidate for environmentally friendly sensors, but it is necessary to devise a method by which to render it conductive. Silver nanowires are highly conductive nanoparticles with many potential applications in sensing, as well as being on a similar order-of-magnitude in size as cellulose derivatives, which makes them a prime candidate for use in this application. Methods of casting cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and TEMPO-Oxidized CNF (TEMPO CNF) films were explored, and …


A Method For Orientation Of Cellulose Nano Fibers For Addition Of Biological Nanoparticles And Tissue Integration, Joshua Hamilton May 2021

A Method For Orientation Of Cellulose Nano Fibers For Addition Of Biological Nanoparticles And Tissue Integration, Joshua Hamilton

Honors College

The University of Maine is one of the world’s leading producers of cellulose nanofibers (CNF). This material has the power to revitalize the Maine paper industry. This has led to an abundance of labs on campus researching applications for the material. Active research activities at the University of Maine include industrial applications such as filtration, biodegradable packaging, building materials and niche health care applications. Niche health care applications include wicking pads for point of care diagnostics and tunable biomaterials ranging from dressings to implantable bone-like materials. Medical applications require an analysis of the biocompatibility of CNF.CNF is biocompatible in general: …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Ionizable Lipid Nanoparticles For In Utero Mrna Delivery., Rachel S. Riley, Meghana V Kashyap, Margaret M Billingsley, Brandon White, Mohamad-Gabriel Alameh, Sourav K Bose, Philip W Zoltick, Hiaying Li, Rui Zhang, Andrew Y Cheng, Drew Weissman, William H Peranteau, Michael J Mitchell Jan 2021

Ionizable Lipid Nanoparticles For In Utero Mrna Delivery., Rachel S. Riley, Meghana V Kashyap, Margaret M Billingsley, Brandon White, Mohamad-Gabriel Alameh, Sourav K Bose, Philip W Zoltick, Hiaying Li, Rui Zhang, Andrew Y Cheng, Drew Weissman, William H Peranteau, Michael J Mitchell

Henry M. Rowan College of Engineering Faculty Scholarship

Clinical advances enable the prenatal diagnosis of genetic diseases that are candidates for gene and enzyme therapies such as messenger RNA (mRNA)-mediated protein replacement. Prenatal mRNA therapies can treat disease before the onset of irreversible pathology with high therapeutic efficacy and safety due to the small fetal size, immature immune system, and abundance of progenitor cells. However, the development of nonviral platforms for prenatal delivery is nascent. We developed a library of ionizable lipid nanoparticles (LNPs) for in utero mRNA delivery to mouse fetuses. We screened LNPs for luciferase mRNA delivery and identified formulations that accumulate within fetal livers, lungs, …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje Oct 2020

Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje

Electronic Thesis and Dissertation Repository

Dual energy (DE) computed tomography (CT) has the capability to influence medicine and pre-clinical research by providing quantitative information that can detect nascent lesions, identify perfusion restoration or inhomogeneities within tissues, and recognize the presence of calcium deposits. A wide variety of instrumentation techniques and scan protocols have been developed for DE CT, with a common goal of acquiring a pair of images that reports the attenuation of a given volume to two different x-ray distributions. While DE image acquisition has benefitted from technical advancements in CT, the contrast agents that are used are still predominantly composed of iodinated small …


Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad Sep 2020

Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad

LSU Doctoral Dissertations

Point-of-care testing (POCT) or Point-of-use (POU) devices or technologies are defined as testing aids that are capable for onsite use or testing. The key advantages of POCT are low sample volume, quick onsite diagnosis, high accuracy, and cost-effectiveness. POCT has the potential and the benefits to facilitate better health care management by rapid routine diagnosis and monitoring. To reach this goal, several researchers as well as the healthcare industry over a few years have conducted cutting edge research to bring science to technology by developing smart diagnostic devices capable of performing as per patient profiles and make personalized health care …


Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang Jun 2020

Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang

USF Tampa Graduate Theses and Dissertations

This thesis includes data and discussion about the technique of metal-enhanced fluorescence (MEF) to lower the detection limit of carcinoembryonic antigen (CEA). The detection limit goes down to 100pg/mL level when using MEF substrate made by rapid thermally annealed silver film covered by silica, which has great promise in diagnosing certain types of cancer that uses CEA as detection biomarker, such as pancreatic cancer and colon cancer. To further address the issue of background noises from non-specifically bound proteins (NSB) in complex media, such as plasma, serum, urine and blood, MEF is integrated with surface acoustic wave (SAW) streaming in …


Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek May 2020

Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek

Theses & Dissertations

Surgical resection remains to be the primary treatment for the majority of solid tumors, including breast cancer. The complete removal of the primary tumor, local metastases, and metastatic lymph nodes dramatically improve a patient’s treatment outcome and prognosis. Nevertheless, surgeons are limited to tactile and visual cues in distinguishing malignant and healthy tissue. This can result in a positive surgical margin (PSM), which occurs when tumor goes undetected and is left behind in the surgical cavity. PSMs decreases a patient’s prognosis and necessitate additional treatment in the form of surgery, radiation, and chemotherapy. An emerging imaging modality, known as fluorescence-guided …


Synthetic Lethality In Pediatric Brain Cancer Cells By Optimized Plga Nanoparticles And Drug Combinations, Megan Ruckman, Megan Otte, Forrest Kievit Apr 2020

Synthetic Lethality In Pediatric Brain Cancer Cells By Optimized Plga Nanoparticles And Drug Combinations, Megan Ruckman, Megan Otte, Forrest Kievit

UCARE Research Products

Here we test drugs effectiveness to inhibit various DNA repair pathways with the purpose of sensitizing cancer cells to radiotherapy. We work on optimizing delivery of DNA repair pathway inhibiting drugs by the use of PLGA nanoparticles.


Nanoparticle Treatment To Counter Reactive Oxygen Species After Traumatic Brain Injury, Brandon Mcdonald, Forrest Kievit Apr 2020

Nanoparticle Treatment To Counter Reactive Oxygen Species After Traumatic Brain Injury, Brandon Mcdonald, Forrest Kievit

UCARE Research Products

Traumatic brain injury (TBI) is defined as damage to the brain, resulting from an external mechanical force, such as an impact to the head (Kievit et. al, 2016).There are several examples that could result in a potential TBI; such as falling with contact to the head, car accidents and even physical activities including football, wrestling, and boxing. Because of the several different scenarios that an individual could impact their head, TBI’s have become an all too common aspect of everyday life. TBI is currently the leading cause of death and disability in children and adults under the age of 45, …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


Extracellular Matrix Nanoparticles Effects On The Lung In Vivo, Brittaney E. Ritchie Jan 2020

Extracellular Matrix Nanoparticles Effects On The Lung In Vivo, Brittaney E. Ritchie

Theses and Dissertations

Acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes diffuse alveolar damage and a loss of the extracellular matrix (ECM). This leads to pulmonary edema and lung function deterioration. Our lab has created decellularized porcine lung, electrosprayed ECM nanoparticles that have been previously shown to have pro-regenerative capabilities in vitro.

In this study, the ECM nanoparticle effects on young murine lungs were tested in vivo. An ECM nanoparticle suspension, previously used for the in vitro studies, was aerosolized intratracheally into the lungs using a microsprayer. 24 hours later, the lung mechanics, bronchoalveolar lavage fluid, and histology …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …


Liver Cancer: Current And Future Trends Using Biomaterials, Sue Anne Chew, Stefania Moscato, Sachin George, Bahareh Azimi, Serena Danti Dec 2019

Liver Cancer: Current And Future Trends Using Biomaterials, Sue Anne Chew, Stefania Moscato, Sachin George, Bahareh Azimi, Serena Danti

Health & Biomedical Sciences Faculty Publications and Presentations

Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …