Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Differentiation

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 24 of 24

Full-Text Articles in Biomedical Engineering and Bioengineering

Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood Jan 2023

Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood

Bioelectrics Publications

Nanodiamonds (ND) have attracted significant interest for their use in several biomedical applications. These applications can be very useful if the safety and compatibility of ND are proven. We assessed the effects of ND (100 nm, Carboxylated) on primary macrophages and a macrophage-like cell line and found that these particles are not toxic to these cells at lower concentrations but may interfere with cell functions and differentiation. Internalization of ND by these cells in a time- and dose-dependent manner was mostly via phagocytosis and clathrin-dependent endocytosis and localized to the cytoplasm but not into the nucleus. No significant induction of …


Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks Aug 2021

Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks

McKelvey School of Engineering Theses & Dissertations

Cartilage is essential to joint development and function. However, there is a variety of cartilage diseases, ranging from developmental (e.g., skeletal dysplasias) to degenerative (e.g., arthritis), in which treatments and therapeutics are lacking. For example, specific point mutations in the ion channel transient receptor potential vanilloid 4 (TRPV4) prevent proper joint development, leading to mild brachyolmia and severe, neonatally lethal metatropic dysplasia. Tissue-engineered cartilage offers an opportunity to elucidate the underlying mechanisms of these cartilage diseases for the development of treatments. Human induced pluripotent stem cells (hiPSCs) are an improved cell source option for cartilage tissue engineering given their minimal …


K-Wire Differentiation, Oluwadamilola Oluwadara, Lillian Maresco, Eunjung Lee, Michelle De Leon Jun 2021

K-Wire Differentiation, Oluwadamilola Oluwadara, Lillian Maresco, Eunjung Lee, Michelle De Leon

Honors Theses

Kirschner Pins, known as K-wires, are smooth sharp stainless steel pins used in the field of orthopedics to stabilize bone fracture fragments in their correct position until they have fully healed. K-wires are most commonly used for comminuted metaphyseal fractures of the long bones, and fractures of smaller bones such as the phalanges. The wires are inserted into bone via a drill and the ends of the wire are bent and left outside of the body for easy removal once the bone has healed. The surgeon uses x-ray images to guide K-wire insertion, ensure proper internal alignment, and determine if …


Stirred Suspension Bioreactor Differentiation Of Human Mesenchymal Stem Cells Into Smooth Muscle Cells, Chris Slavin May 2020

Stirred Suspension Bioreactor Differentiation Of Human Mesenchymal Stem Cells Into Smooth Muscle Cells, Chris Slavin

Biomedical Engineering Undergraduate Honors Theses

Human mesenchymal stem cells (hMSCs) are a promising candidate for cellular therapies due to their multipotency, self-renewal capacity, and immunomodulatory properties. However, their isolation is a difficult and potentially painful process with very low yield, and traditional static mammalian cell culture techniques are too slow and expensive for large scale growth and differentiation of stem cells to be practical. Current research is focused on improving methods for cultivating hMSCs in stirred suspension bioreactors (SSBs), but little work has been done with regard to their differentiation in dynamic conditions such as those in SSBs. Differentiation at a large scale would increase …


Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis Feb 2019

Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis

Biological Engineering Faculty Publications

Muscular atrophy, defined as the loss of muscle tissue, is a serious issue for immobilized patients on Earth and for humans during spaceflight, where microgravity prevents normal muscle loading. In vitro modeling is an important step in understanding atrophy mechanisms and testing countermeasures before animal trials. The most ideal environment for modeling must be empirically determined to best mimic known responses in vivo. To simulate microgravity conditions, murine C2C12 myoblasts were cultured in a rotary cell culture system (RCCS). Alginate encapsulation was compared against polystyrene microcarrier beads as a substrate for culturing these adherent muscle cells. Changes after culture …


Development Of Collagen-Based Scaffolds For Differentiation Of Induced Pluripotent Stem Cells, Siteng Fang Jul 2018

Development Of Collagen-Based Scaffolds For Differentiation Of Induced Pluripotent Stem Cells, Siteng Fang

Graduate Dissertations and Theses

Collagen hydrogel has been broadly studied and applied in engineering 3D scaffold materials in tissue engineering. A collagen hydrogel can provide cells with a porous and soft environment to proliferate and differentiate. However, lacking mechanical stiffness and shrinkage resistance made it a challenge to sustain shape and size during a long stem cell differentiation process. In addition, a cytocompatible scaffold for human induced pluripotent stem cell (iPSC)-laden culture has not been fully investigated. The goal of this study is to develop stable and biocompatible collagen-based scaffolds that are suitable for direct seeding and lineage progression of iPSCs. In this work, …


Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs May 2018

Designing Synthetic Environments To Control Valvular Interstital Cells In Vitro, Kent E. Coombs

Biomedical Sciences ETDs

Aortic valve disease (AVD) is a large contributor to health costs in the United States affecting 2.8% of the population greater than 75 years old. With a growing elderly population due to medical advances, AVD will continue to rise in prevalence over time. Current treatments for AVD are insufficient due to a lack of preventative therapies and the bioprosthetic valves used for surgical replacement have major limitations. Tissue engineered heart valves (TEHVs) present an ideal solution to current AVD needs because of their biocompatibility, capability to integrate with the host’s tissue, and ability to utilize the natural repair mechanisms of …


Regulation Of Pituitary Progenitor Differentiation By Β-Catenin, Julie Leann Youngblood Jan 2018

Regulation Of Pituitary Progenitor Differentiation By Β-Catenin, Julie Leann Youngblood

Theses and Dissertations

The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. These vital processes are regulated through the secretion of pituitary hormones from specialized cell types. Pituitary hormone-producing cells arise from a common pool of pituitary progenitors in the developing Rathke’s pouch, and mutations that disrupt the formation and differentiation of pituitary progenitors often result in hypopituitarism, pituitary adenomas, or craniopharyngiomas. Thus, it is necessary to determine the mechanisms of pituitary development in order to understand the ways in which these congenital defects and tumors develop and disrupt pituitary function. Canonical …


The Impact Of The Mitochondrial Metabolism Of Induced Pluripotent Stem Cells Upon Differentiation, Stefanie T. Shahan May 2017

The Impact Of The Mitochondrial Metabolism Of Induced Pluripotent Stem Cells Upon Differentiation, Stefanie T. Shahan

McKelvey School of Engineering Theses & Dissertations

Induced pluripotent stem cells (iPSCs) can be differentiated into any cell type found in the body. The derivation of a stem cell derived β cell (SC-β) capable of responding to glucose by secreting insulin was hugely significant for diabetes research and opened up the possibility of cell replacement therapy to combat this widespread disease (Pagliuca et al. 2014). The optimization of differentiation procedures such as this could improve yield, function, cost, and efficiency of a stem cell-derived product. Current approaches to improve differentiation are primarily focused on signal transduction pathways, while the metabolic state of the cells has received little …


Electrospinning Of Poly (Ester Amide) Fibres For Mesenchymal Progenitor Cell Differentiation, Sarah Kiros Oct 2016

Electrospinning Of Poly (Ester Amide) Fibres For Mesenchymal Progenitor Cell Differentiation, Sarah Kiros

Electronic Thesis and Dissertation Repository

The in vitro vascular tissue engineering paradigm seeks to produce biologically responsive vascular substitutes using cells, biodegradable scaffolds, and bioreactors to mature the tissue for the potential treatment of vascular occlusions and to create 3D tissue models for pre-clinical testing. In this work, a poly (ester amide) (PEA) derived from from L-phenylalanine, sebacoyl chloride and 1,4 butanediol was synthesized and electrospun to form both 3D fibrous mats and tubular constructs. Both the polymer solution concentration and mandrel rotation speed were optimized to fabricate bead-free fibres. Cytocompatibility and proliferation studies using mesenchymal progenitor 10T1/2 cells showed PEA fibres were not cytotoxic …


Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum Aug 2016

Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lower back pain from intervertebral disc injury affects around 84% of the population at some point in their life, which at its worst may cause total immobilization. This pain can only be temporarily relieved by spinal fusion or intervertebral disc replacement; however, both of these cause loss of natural motion in patients by removing damaged fibrocartilage discs. While these techniques help mitigate pain briefly, no permanent solution exists currently to both relieve pain and preserve natural motion. My work may be a solution by eventually providing patient-specific implants that resemble native tissue in the regeneration process that could be absorbed …


Integrated Strategies For The Production, Maturation And Storage Of Functional Cardiomyocytes Derived From Human Pluripotent Stem Cells, Claudia Correia, Paula Alves May 2016

Integrated Strategies For The Production, Maturation And Storage Of Functional Cardiomyocytes Derived From Human Pluripotent Stem Cells, Claudia Correia, Paula Alves

Cell Culture Engineering XV

The production of cardiomyocytes (CM) from human pluripotent stem cells (hPSC) holds great promise for cardiotoxicity drug testing, disease modeling and cardiac regeneration [1]. However, the complex nets of signalling pathways involved in cardiomyogenesis compromises the effectiveness of the existing differentiation protocols to reproducibly produce high-quality CM from hPSC (hPSC-CM). Produced hPSC-CM are immature compared with adult CMs, express typical fetal cardiac genes, have immature electrophysiological properties and use glucose as major energy source [2]. The applicability of hPSC-CM in the clinic/industry is also dependent on the development of efficient methods for worldwide shipment of these cells. In this study …


Nanotechnology & Human Stem Cells : Applications In Cardiogenesis And Neurogenesis, Martin Lyubomirov Tomov Jan 2016

Nanotechnology & Human Stem Cells : Applications In Cardiogenesis And Neurogenesis, Martin Lyubomirov Tomov

Legacy Theses & Dissertations (2009 - 2024)

Human stem cell research holds an unprecedented promise to revolutionize the way we approach medicine and healthcare in general, moving us from a position of mostly addressing the symptoms to a state where treatments can focus on removing the underlying causes of a condition. Stem cell research can shed light into normal developmental pathways, as we are beginning to replicate them in a petri dish and can also be used to model diseases and abnormal conditions. Direct applications can range from finding cures for single or multigene diseases to demonstrating that we can replace these genes with a normal copy. …


Selective Protein Labelling To Visualize Cellular Differentiation, Andrew J. Witten, Tamara L. Kinzer-Ursem Aug 2015

Selective Protein Labelling To Visualize Cellular Differentiation, Andrew J. Witten, Tamara L. Kinzer-Ursem

The Summer Undergraduate Research Fellowship (SURF) Symposium

Protein post-translational modifications serve to give proteins new cellular function, spatial localization, or enzymatic activity. Myristoylation is a common post-translational modification where the enzyme N-myristoyltransferase adds myristic acid onto the N-terminus of a variety of proteins. In this work we use a myristic acid analog, 12-azidododecanoic acid (12ADA) to facilitate the implementation of azide-alkyne cycloaddition reactions on myristoylated proteins. Selective protein labeling methods such as these are useful in research because they can be used to help determine the biological function of this protein lipid modification and can be extended to study disregulated protein myristoylation in disease states. To validate …


Microengineering The Neural Tube, Christopher Demers Aug 2015

Microengineering The Neural Tube, Christopher Demers

Electronic Theses and Dissertations

Early embryonic development is a complex and highly regulated orchestra of instructive cues that collectively guide naïve stem cells towards progressively more specialized fates. In the neural tube, the precursor structure to the brain and spinal cord, these signals emanate from ‘organizing centers’ surrounding the neural tube. These organizing centers send out soluble cues or morphogens that diffuse tens to hundreds of microns to recipient cells residing in the neural tube. Re-creating this dynamic landscape of cues in vitro is impossible using standard cell culture tools and techniques. However, microfluidics is perfectly suited to fill this gap, allowing precise control …


Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute May 2015

Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute

Dissertations & Theses (Open Access)

Calcific and hemorrhagic foci of susceptibility are frequently encountered on routine brain MR studies. Both etiologies cause variations in local magnetic field strength, leading to dark regions on the MR images that cannot be classified. Single-energy CT (SECT) can be used to identify lesions with attenuation over 100 HU as calcific, however lesions with lower attenuation cannot be reliably identified. While calcific lesions are unlikely to cause harm, hemorrhagic lesions carry a risk of subsequent intracranial bleeding; as such, identification of hemorrhage is vital in preventing the inappropriate use of anticoagulant medications in patients with hemorrhagic lesions.

Given there currently …


Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young Dec 2014

Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young

UNLV Theses, Dissertations, Professional Papers, and Capstones

Mesenchymal stem cells are derived from a variety of human tissues and are being bioengineered and studied for possible uses in the advancement of medicine. Recent efforts are being focused on Dental Pulp Stem Cells (DPSC's) due to the accessibility of this tissue. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates.

The objective …


Construction Of 3d Biomimetic Tissue Niches For Directing Pancreatic Lineage Differentiation Of Human Embryonic Stem Cells, Weiwei Wang Aug 2014

Construction Of 3d Biomimetic Tissue Niches For Directing Pancreatic Lineage Differentiation Of Human Embryonic Stem Cells, Weiwei Wang

Graduate Theses and Dissertations

The potential of human embryonic stem cells (hESCs) to differentiate into insulin producing beta cells offers great hope for cell-based therapy for diabetes treatment. However, in vitro pancreatic differentiation of hESCs remains challenging. In the past decade, most protocols for differentiating pancreatic cells have been focused on the use of signaling molecule cocktails on 2D substrates. Studies on embryonic development biology strongly suggest that extracellular matrix (ECM) plays a critical role on hESCs behavior. In this work, we first established a 3D collagen scaffold culture system for hESCs differentiating into definitive endoderm (DE), which is the first and most important …


Effects Of Environmental Heavy Metals On Neural Stem Cell Survival And Differentiation, Sameera S. Clev Tasneem Jan 2014

Effects Of Environmental Heavy Metals On Neural Stem Cell Survival And Differentiation, Sameera S. Clev Tasneem

ETD Archive

No abstract provided.


Elastogenic Characterization Of Rat Bm-Msc-Derived Smcs Towards Use In Soft Tissue Engineering, Sahithya Wintrich Jan 2012

Elastogenic Characterization Of Rat Bm-Msc-Derived Smcs Towards Use In Soft Tissue Engineering, Sahithya Wintrich

ETD Archive

No abstract provided.


Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia Jan 2012

Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia

Legacy Theses & Dissertations (2009 - 2024)

The salivary gland is a complex organ exhibiting a branching, 3-dimensional structure made up of acinar (saliva-producing), and ductal (saliva transporting and modifying) epithelial cells. The high surface area of the gland allows it to efficiently provide the mouth with saliva, maintaining oral cleanliness and comfort. Salivary gland hypofunction, a significant clinical problem often caused by the autoimmune disease Sjögren's syndrome or head and neck radiation for cancer patients, affects millions of Americans and is characterized by a loss of function of salivary gland acinar cells. Chronic xerostomia, or dry mouth, arises as a result of salivary gland hypofunction and …


Hif-1 Alpha: A Master Regulator Of Trophoblast Differentiation And Placental Development, Kashmira Kulkarni Jan 2009

Hif-1 Alpha: A Master Regulator Of Trophoblast Differentiation And Placental Development, Kashmira Kulkarni

Browse all Theses and Dissertations

Early embryonic development occurs under low oxygen levels. The placenta is an organ transiently formed during pregnancy and plays a crucial role during development of the embryo. Alterations in the placental structure or function have been associated with the pathologies such as preeclampsia in humans. In mammals, the hypoxia inducible factor (HIF) transcription factors have been identified as the major regulators of cellular responses in low oxygen. In the current study, we investigated the effects of low oxygen on the differentiation of trophoblast stem cells, lineage committed trophoblast giant cells and labyrinthine lineage-committed cells. We examined the effects of an …


Biomimetic Habitats For Cells: Ordered Matrix Deposition And Differentiation In Gingival Fibroblasts Cultured On Hydroxyapatite Coated With A Collagen Analogue, Rajendra S. Bhatnagar, Jing Jing Qian, Anna Wedrychowska, Eric Dixon, Nancy Smith Jan 1999

Biomimetic Habitats For Cells: Ordered Matrix Deposition And Differentiation In Gingival Fibroblasts Cultured On Hydroxyapatite Coated With A Collagen Analogue, Rajendra S. Bhatnagar, Jing Jing Qian, Anna Wedrychowska, Eric Dixon, Nancy Smith

Cells and Materials

In tissues, cells attach and migrate on collagen. Interaction with collagen modulates cell proliferation and differentiation. We propose that similar environments may be constructed by immobilizing collagen-derived cell-binding peptides in a three-dimensional (3-D) template. We identified a cell binding domain of type I collagen and showed that a 15-residue synthetic analogue (P-15) binds cells with high affinity. In the present study, we compared the behavior of human gingival fibroblasts (HGF) in culture on hydroxyapatite (HA) and on HA-P-15. HGF cultured on HA formed sparse monolayers with little order and deposited a scant matrix. HGF on HA-P-15 formed highly oriented 3-D …


Osteoclast Differentiation In Cocultures Of Chondrogenic Cell Line Rcj 3.1c5.18 And Mouse Or Rat Bone Marrow: Dependence On Culture Substrate And Association With Alkaline Phosphatase Positive Marrow Stromal Cells, G. I. Anderson, J. N. M. Heersche Jan 1997

Osteoclast Differentiation In Cocultures Of Chondrogenic Cell Line Rcj 3.1c5.18 And Mouse Or Rat Bone Marrow: Dependence On Culture Substrate And Association With Alkaline Phosphatase Positive Marrow Stromal Cells, G. I. Anderson, J. N. M. Heersche

Cells and Materials

We investigated the formation of tartrate-resistant acid phosphatase positive (TRAP+) colonies and multinucleated cells (MNCs) in rat and mouse marrow cultures alone and cocultured with the chondrogenic cell line, RCJ3.1C5.18 on different substrata. In mouse marrow cultured in 35 mm dishes, few TRAP+ MNCs developed, while in rat marrow cultures, many TRAP+ MNCs, which possessed calcitonin receptors and resorbed bone, developed. In both rat and mouse cultures, TRAP+ MNC first appeared at Day 4 and grew in number up to Day 8. When both marrows were cocultured with RC3.1C5.18 cells, TRAP+ colony numbers increased relative to marrow alone. In marrow …