Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Behavior Classification Using Multi-Site Lfp And Ecog Signals, Adam O. Hebb, Hosein M. Golshan, Sara J. Hanrahan, Joshua Nedrud, Mohammad H. Mahoor Nov 2016

Behavior Classification Using Multi-Site Lfp And Ecog Signals, Adam O. Hebb, Hosein M. Golshan, Sara J. Hanrahan, Joshua Nedrud, Mohammad H. Mahoor

Electrical and Computer Engineering: Graduate Student Scholarship

Abstract-Deep Brain Stimulation (DBS) is an effective therapy that alleviates the motor signs of Parkinson’s disease (PD). Existing DBS is open loop, providing a time invariant stimulation pulse train that may generate cognitive, speech, and balance side effects. A closed-loop DBS system that utilizes appropriate physiological control variables may improve therapeutic results, reduce stimulation side effects, and extend battery life of pulse generators. Furthermore, by customizing DBS to a patient’s behavioral goal, side effects of stimulation may arise only when they are non-detrimental to the patient’s current goals. Therefore, classification of human behavior using physiological signals is an …


Utilizing Fast Spin Echo Mri To Reduce Image Artifacts And Improve Implant/Tissue Interface Detection In Refractory Parkinson’S Patients With Deep Brain Stimulators, Subhendra N. Sarkar, Pooja R. Sarkar, Efstathios Papavassiliou, Rafael Rojas Feb 2014

Utilizing Fast Spin Echo Mri To Reduce Image Artifacts And Improve Implant/Tissue Interface Detection In Refractory Parkinson’S Patients With Deep Brain Stimulators, Subhendra N. Sarkar, Pooja R. Sarkar, Efstathios Papavassiliou, Rafael Rojas

Publications and Research

Introduction. In medically refractory Parkinson’s disease (PD) deep-brain stimulation (DBS) is an effective therapeutic tool. Postimplantation MRI is important in assessing tissue damage and DBS lead placement accuracy. We wanted to identify which MRI sequence can detectDBS leads with smallest artifactual signal void, allowing better tissue/electrode edge conspicuity.

Methods. Using an IRB approved protocol 8 advanced PDpatientswere imagedwithinMRconditional safety guidelines at lowRF power (SAR ≤ 0.1 W/kg) in coronal plane at 1.5T by various sequences.The image slices were subjectively evaluated for diagnostic quality and the lead contact diameters were compared to identify a sequence least affected by metallic leads.

Results …