Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Quantitative Analysis Techniques For Assessing Organelle Organization And Dynamics In Individual Cells, Isaac Vargas Dec 2019

Quantitative Analysis Techniques For Assessing Organelle Organization And Dynamics In Individual Cells, Isaac Vargas

Graduate Theses and Dissertations

In biomedical optics and microscopy, the organization and morphology of organelles have been widely studied. In spite of novel imaging techniques, there is still a lack of quantitative tools to easily measure cellular characteristics from image data. Previous studies have explored multiple approaches to assess organelle organization and alignment, resulting in complicated and extensive algorithms that are both subject to multiple steps of image processing and influenced by non-cellular artifacts. In this thesis, a technique called the Modified Blanket Method (MBM) is introduced to quantify organelle organization through measurements of fractal dimension (FD) on a pixel-by-pixel basis. With the use …


Photoacoustic Elastography And Next-Generation Photoacoustic Tomography Techniques Towards Clinical Translation, Pengfei Hai May 2018

Photoacoustic Elastography And Next-Generation Photoacoustic Tomography Techniques Towards Clinical Translation, Pengfei Hai

McKelvey School of Engineering Theses & Dissertations

Ultrasonically probing optical absorption, photoacoustic tomography (PAT) combines rich optical contrast with high ultrasonic resolution at depths beyond the optical diffusion limit. With consistent optical absorption contrast at different scales and highly scalable spatial resolution and penetration depth, PAT holds great promise as an important tool for both fundamental research and clinical application. Despite tremendous progress, PAT still encounters certain limitations that prevent it from becoming readily adopted in the clinical settings. This dissertation aims to advance both the technical development and application of PAT towards its clinical translation.

The first part of this dissertation describes the development of photoacoustic …


Validation Of A Confocal Light Sheet Microscope Using Push Broom Translation For Biomedical Applications, Joshua Hutcheson May 2016

Validation Of A Confocal Light Sheet Microscope Using Push Broom Translation For Biomedical Applications, Joshua Hutcheson

Graduate Theses and Dissertations

There exists a need for research of optical methods capable of image cytometry suitable for point-of-care technology. To propose am optical approach with no moving parts for simplification of mechanical components for the further development of the technology to the poin-of-care, a linear sensor with push broom translation method. Push broom translation is a method of moving objects by the sensor for an extended field of view. A polydimethylsiloxane (PDMS) microfluidic chamber with a syringe pump was used to deliver objects by the sensor. The volumetric rate of the pump was correlated to the integration time of the sensor to …


Multi-Surface Simplex Spine Segmentation For Spine Surgery Simulation And Planning, Rabia Haq Jan 2015

Multi-Surface Simplex Spine Segmentation For Spine Surgery Simulation And Planning, Rabia Haq

Computational Modeling & Simulation Engineering Theses & Dissertations

This research proposes to develop a knowledge-based multi-surface simplex deformable model for segmentation of healthy as well as pathological lumbar spine data. It aims to provide a more accurate and robust segmentation scheme for identification of intervertebral disc pathologies to assist with spine surgery planning. A robust technique that combines multi-surface and shape statistics-aware variants of the deformable simplex model is presented. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user-assistance is …


A Compressed Sensing Algorithm For Sparse-View Pinhole Single Photon Emission Computed Tomography, Paul Arthur Wolf, Emil Y. Sidky, Taly Gilat Schmidt Oct 2011

A Compressed Sensing Algorithm For Sparse-View Pinhole Single Photon Emission Computed Tomography, Paul Arthur Wolf, Emil Y. Sidky, Taly Gilat Schmidt

Biomedical Engineering Faculty Research and Publications

Single Photon Emission Computed Tomography (SPECT) systems are being developed with multiple cameras and without gantry rotation to provide rapid dynamic acquisitions. However, the resulting data is angularly undersampled, due to the limited number of views. We propose a novel reconstruction algorithm for sparse-view SPECT based on Compressed Sensing (CS) theory. The algorithm models Poisson noise by modifying the Iterative Hard Thresholding algorithm to minimize the Kullback-Leibler (KL) distance by gradient descent. Because the underlying objects of SPECT images are expected to be smooth, a discrete wavelet transform (DWT) using an orthogonal spline wavelet kernel is used as the sparsifying …