Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Effects Of Genipin Crosslinking On The Properties Of Tendon Derived Extracellular Matrix Hydrogels, Alicia Cheyenne Coombs May 2021

Effects Of Genipin Crosslinking On The Properties Of Tendon Derived Extracellular Matrix Hydrogels, Alicia Cheyenne Coombs

Theses and Dissertations

Extracellular matrix (ECM) hydrogels are a useful biomaterial in the tissue engineering field used for injectables in drug delivery systems, wound dressing, tissue regeneration and many other applications. ECM hydrogels are highly biocompatible, contain proper ratios of biomolecules required for complex bioactivity of tissues and they promote tissue repair. However, ECM hydrogels typically have poor mechanical strength, which leads to hydrogel instability, and a limitation in their ability to be modified for translational applications. In this research, genipin, a natural crosslinker derived from plants, was utilized in an attempt to improve upon the mechanical limitations of ECM hydrogels. Genipin has …


Stability Of Silk And Collagen Protein Materials In Space, Xiao Hu, Waseem K. Raja, Bo An, Olena Tokareva, Peggy Cebe, David L. Kaplan Dec 2013

Stability Of Silk And Collagen Protein Materials In Space, Xiao Hu, Waseem K. Raja, Bo An, Olena Tokareva, Peggy Cebe, David L. Kaplan

Faculty Scholarship for the College of Science & Mathematics

Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, …