Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Bioink Optimization And Effects Of Microgravity On 3d Bioprinted Cell Laden Constructs, Likitha Somasekhar May 2021

Bioink Optimization And Effects Of Microgravity On 3d Bioprinted Cell Laden Constructs, Likitha Somasekhar

Theses and Dissertations

Bioengineered 3D tissue constructs have gained attention as in vitro tools for the study of cell-cell and cell-matrix interactions and are being explored for potential use as experimental models for mimicking human tissues. One of the main problems in tissue engineering is the necessity to vascularize complex engineered tissues and sacrificial printing has been recognized as a possible solution to vascularization of the bioprinted tissues. Research studies have demonstrated that exposure to microgravity in space induces adaptive alterations in vascular structure and function. Changes in the morphology and gene expression is observed when endothelial cells are exposed to microgravity and …


Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon Aug 2018

Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microbes can be used to produce valuable drugs, chemicals, and biofuels, but their potential has not been fully realized due to low production yields. To improve biomanufacturing processes and yield, we are developing novel, transcriptional regulators using biosynthesis technology in order to improve cellular health and overall production. Our regulator contains elastin-like polypeptides (ELPs), which make ideal sensors since they exhibit a sharp, inverse phase transition to indicators of cell health such as intracellular pH and ionic strength, and external stimuli such as temperature. We hypothesize that ELP can be fused to transcription factors to control expression of target genes. …


Exploiting Self-Organization In Bioengineered Systems: A Computational Approach, Delin Davis, Anna Doloman, Gregory J. Podgorski, Elizabeth Vargis, Nicholas S. Flann Apr 2017

Exploiting Self-Organization In Bioengineered Systems: A Computational Approach, Delin Davis, Anna Doloman, Gregory J. Podgorski, Elizabeth Vargis, Nicholas S. Flann

Biological Engineering Faculty Publications

The productivity of bioengineered cell factories is limited by inefficiencies in nutrient delivery and waste and product removal. Current solution approaches explore changes in the physical configurations of the bioreactors. This work investigates the possibilities of exploiting self-organizing vascular networks to support producer cells within the factory. A computational model simulates de novo vascular development of endothelial-like cells and the resultant network functioning to deliver nutrients and extract product and waste from the cell culture. Microbial factories with vascular networks are evaluated for their scalability, robustness, and productivity compared to the cell factories without a vascular network. Initial studies demonstrate …


Biomanufacturing Through Igem-An International Student Competition, Asif Rahman, Ryan J. Putman, Neal Hengge, Charles D. Miller Jan 2017

Biomanufacturing Through Igem-An International Student Competition, Asif Rahman, Ryan J. Putman, Neal Hengge, Charles D. Miller

Biological Engineering Faculty Publications

The foundations of synthetic biology are built on molecular biology and genetic engineering. One of the purposes of synthetic biology is to make biology easier to engineer by the creation of standardized biological parts and devices. There are a wide range of potential applications for synthetic biology and a variety of approaches to constructing parts and systems. Undergraduate Science, Technology, Engineering, and Mathematics (STEM) students from around the world apply synthetic biology principles at the annual International Genetically Engineered Machine (iGEM) competition to demonstrate functioning biological systems created from standardized parts. The iGEM competition will continue to add to the …


Comparison Of Commercial Cho Cell Media Formulations Using Material-Oriented Recurrent Spectral Libraries, Kelly Telu May 2016

Comparison Of Commercial Cho Cell Media Formulations Using Material-Oriented Recurrent Spectral Libraries, Kelly Telu

Cell Culture Engineering XV

Chinese hamster ovary (CHO) cells are commonly used for the production of biological therapeutics. Metabolic profiles of media components can be used to monitor process variability and look for markers that discriminate between batches of product. Currently, there exists no database of CHO media components or a method for the comparison of commercial media formulations. We are creating material-oriented libraries of CHO media components that include LC-MS/MS and GC-MS data. The libraries represent all metabolites that can be detected by LC-MS/MS and GC-MS and consist of recurrent spectra that cover all known fragmentation conditions and precursors. Recurrent spectra occur repeatedly …