Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Engineering Transcriptional Regulation For Cell-Based Therapies., Matthias Recktenwald, Evan Hutt, Leah Davis, James Macaulay, Nichole M. Daringer, Peter Galie, Mary Staehle, Sebastian Vega Apr 2024

Engineering Transcriptional Regulation For Cell-Based Therapies., Matthias Recktenwald, Evan Hutt, Leah Davis, James Macaulay, Nichole M. Daringer, Peter Galie, Mary Staehle, Sebastian Vega

Faculty Scholarship for the Rowan-Virtua School of Translational Biomedical Engineering & Sciences

A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is …


Ionizable Lipid Nanoparticles For In Utero Mrna Delivery., Rachel S. Riley, Meghana V Kashyap, Margaret M Billingsley, Brandon White, Mohamad-Gabriel Alameh, Sourav K Bose, Philip W Zoltick, Hiaying Li, Rui Zhang, Andrew Y Cheng, Drew Weissman, William H Peranteau, Michael J Mitchell Jan 2021

Ionizable Lipid Nanoparticles For In Utero Mrna Delivery., Rachel S. Riley, Meghana V Kashyap, Margaret M Billingsley, Brandon White, Mohamad-Gabriel Alameh, Sourav K Bose, Philip W Zoltick, Hiaying Li, Rui Zhang, Andrew Y Cheng, Drew Weissman, William H Peranteau, Michael J Mitchell

Henry M. Rowan College of Engineering Faculty Scholarship

Clinical advances enable the prenatal diagnosis of genetic diseases that are candidates for gene and enzyme therapies such as messenger RNA (mRNA)-mediated protein replacement. Prenatal mRNA therapies can treat disease before the onset of irreversible pathology with high therapeutic efficacy and safety due to the small fetal size, immature immune system, and abundance of progenitor cells. However, the development of nonviral platforms for prenatal delivery is nascent. We developed a library of ionizable lipid nanoparticles (LNPs) for in utero mRNA delivery to mouse fetuses. We screened LNPs for luciferase mRNA delivery and identified formulations that accumulate within fetal livers, lungs, …


Peristaltic Flow In The Glymphatic System., Francesco Romanò, Vinod Suresh, Peter Galie, James B Grotberg Dec 2020

Peristaltic Flow In The Glymphatic System., Francesco Romanò, Vinod Suresh, Peter Galie, James B Grotberg

Henry M. Rowan College of Engineering Faculty Scholarship

The flow inside the perivascular space (PVS) is modeled using a first-principles approach in order to investigate how the cerebrospinal fluid (CSF) enters the brain through a permeable layer of glial cells. Lubrication theory is employed to deal with the flow in the thin annular gap of the perivascular space between an impermeable artery and the brain tissue. The artery has an imposed peristaltic deformation and the deformable brain tissue is modeled by means of an elastic Hooke's law. The perivascular flow model is solved numerically, discovering that the peristaltic wave induces a steady streaming to/from the brain which strongly …


Microarray Embedding/Sectioning For Parallel Analysis Of 3d Cell Spheroids., Jonathan Gabriel, David Brennan, Jennifer H Elisseeff, Vincent Beachley Nov 2019

Microarray Embedding/Sectioning For Parallel Analysis Of 3d Cell Spheroids., Jonathan Gabriel, David Brennan, Jennifer H Elisseeff, Vincent Beachley

Henry M. Rowan College of Engineering Faculty Scholarship

Three-dimensional cell spheroid models can be used to predict the effect of drugs and therapeutics and to model tissue development and regeneration. The utility of these models is enhanced by high throughput 3D spheroid culture technologies allowing researchers to efficiently culture numerous spheroids under varied experimental conditions. Detailed analysis of high throughput spheroid culture is much less efficient and generally limited to narrow outputs, such as metabolic viability. We describe a microarray approach that makes traditional histological embedding/sectioning/staining feasible for large 3D cell spheroid sample sets. Detailed methodology to apply this technology is provided. Analysis of the technique validates the …


Tumor Vessel Normalization After Aerobic Exercise Enhances Chemotherapeutic Efficacy., Keri L Schadler, Nicholas J Thomas, Peter Galie, Dong Ha Bhang, Kerry C Roby, Prince Addai, Jacob E Till, Kathleen Sturgeon, Alexander Zaslavsky, Christopher S Chen, Sandra Ryeom Oct 2016

Tumor Vessel Normalization After Aerobic Exercise Enhances Chemotherapeutic Efficacy., Keri L Schadler, Nicholas J Thomas, Peter Galie, Dong Ha Bhang, Kerry C Roby, Prince Addai, Jacob E Till, Kathleen Sturgeon, Alexander Zaslavsky, Christopher S Chen, Sandra Ryeom

Henry M. Rowan College of Engineering Faculty Scholarship

Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical …


Dtaf Dye Concentrations Commonly Used To Measure Microscale Deformations In Biological Tissues Alter Tissue Mechanics., Spencer E Szczesny, Rachel S. Riley, Dawn M Elliott Jan 2014

Dtaf Dye Concentrations Commonly Used To Measure Microscale Deformations In Biological Tissues Alter Tissue Mechanics., Spencer E Szczesny, Rachel S. Riley, Dawn M Elliott

Henry M. Rowan College of Engineering Faculty Scholarship

Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF) is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml) may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of …


Nanosecond Pulsed Electric Field Thresholds For Nanopore Formation In Neural Cells., Caleb C Roth, Gleb P Tolstykh, Jason A Payne, Marjorie A Kuipers, Gary L. Thompson Iii, Mauris N Desilva, Bennett L Ibey Mar 2013

Nanosecond Pulsed Electric Field Thresholds For Nanopore Formation In Neural Cells., Caleb C Roth, Gleb P Tolstykh, Jason A Payne, Marjorie A Kuipers, Gary L. Thompson Iii, Mauris N Desilva, Bennett L Ibey

Henry M. Rowan College of Engineering Faculty Scholarship

The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca(2+)), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca(2+) overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using …


Coordinated Dynamic Gene Expression Changes In The Central Nucleus Of The Amygdala During Alcohol Withdrawal., Kate Freeman, Mary M. Staehle, Rajanikanth Vadigepalli, Gregory E Gonye, Babatunde A Ogunnaike, Jan B Hoek, James S Schwaber Jan 2013

Coordinated Dynamic Gene Expression Changes In The Central Nucleus Of The Amygdala During Alcohol Withdrawal., Kate Freeman, Mary M. Staehle, Rajanikanth Vadigepalli, Gregory E Gonye, Babatunde A Ogunnaike, Jan B Hoek, James S Schwaber

Faculty Scholarship for the College of Science & Mathematics

BACKGROUND: Chronic alcohol use causes widespread changes in the cellular biology of the amygdala's central nucleus (CeA), a GABAergic center that integrates autonomic physiology with the emotional aspects of motivation and learning. While alcohol-induced neurochemical changes play a role in dependence and drinking behavior, little is known about the CeA's dynamic changes during withdrawal, a period of emotional and physiologic disturbance.

METHODS: We used a qRT-PCR platform to measure 139 transcripts in 92 rat CeA samples from control (N = 33), chronically alcohol exposed (N = 26), and withdrawn rats (t = 4, 8, 18, 32, and 48 hours; N …


Rapid Temporal Changes In The Expression Of A Set Of Neuromodulatory Genes During Alcohol Withdrawal In The Dorsal Vagal Complex: Molecular Evidence Of Homeostatic Disturbance., Kate Freeman, Mary M. Staehle, Zeynep H Gümüş, Rajanikanth Vadigepalli, Gregory E Gonye, Carmen N Nichols, Babatunde A Ogunnaike, Jan B Hoek, James S Schwaber Oct 2012

Rapid Temporal Changes In The Expression Of A Set Of Neuromodulatory Genes During Alcohol Withdrawal In The Dorsal Vagal Complex: Molecular Evidence Of Homeostatic Disturbance., Kate Freeman, Mary M. Staehle, Zeynep H Gümüş, Rajanikanth Vadigepalli, Gregory E Gonye, Carmen N Nichols, Babatunde A Ogunnaike, Jan B Hoek, James S Schwaber

Faculty Scholarship for the College of Science & Mathematics

BACKGROUND: Chronic alcohol exposure produces neuroadaptation, which increases the risk of cellular excitotoxicity and autonomic dysfunction during withdrawal. The temporal progression and regulation of the gene expression that contributes to this physiologic and behavioral phenotype is poorly understood early in the withdrawal period. Further, it is unexplored in the dorsal vagal complex (DVC), a brainstem autonomic regulatory structure.

METHODS: We use a quantitative polymerase chain reaction platform to precisely and simultaneously measure the expression of 145 neuromodulatory genes in more than 100 rat DVC samples from control, chronically alcohol-exposed, and withdrawn rats. To gain insight into the dynamic progression and …