Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Low-Intensity Vibration Restores Nuclear Yap Levels And Acute Yap Nuclear Shuttling In Mesenchymal Stem Cells Subjected To Simulated Microgravity, Matthew Thompson, Kali Woods, Joshua Newberg, Julia Thom Oxford, Gunes Uzer Dec 2020

Low-Intensity Vibration Restores Nuclear Yap Levels And Acute Yap Nuclear Shuttling In Mesenchymal Stem Cells Subjected To Simulated Microgravity, Matthew Thompson, Kali Woods, Joshua Newberg, Julia Thom Oxford, Gunes Uzer

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Reducing the musculoskeletal deterioration that astronauts experience in microgravity requires countermeasures that can improve the effectiveness of otherwise rigorous and time-expensive exercise regimens in space. The ability of low-intensity vibrations (LIV) to activate force-responsive signaling pathways in cells suggests LIV as a potential countermeasure to improve cell responsiveness to subsequent mechanical challenge. Mechanoresponse of mesenchymal stem cells (MSC), which maintain bone-making osteoblasts, is in part controlled by the “mechanotransducer” protein YAP (Yes-associated protein), which is shuttled into the nucleus in response to cyto-mechanical forces. Here, using YAP nuclear shuttling as a measurement outcome, we tested the effect of 72 h …


Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye Oct 2020

Axonal Blockage With Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Numerous neurological dysfunctions are characterized by undesirable nerve activity. By providing reversible nerve blockage, electric stimulation with an implanted electrode holds promise in the treatment of these conditions. However, there are several limitations to its application, including poor bio-compatibility and decreased efficacy during chronic implantation. A magnetic coil of miniature size can mitigate some of these problems, by coating it with biocompatible material for chronic implantation. However, it is unknown if miniature coils could be effective in axonal blockage and, if so, what the underlying mechanisms are. Here we demonstrate that a submillimeter magnetic coil can reversibly block action potentials …


Effect Of Bout Length On Gait Measures In People With And Without Parkinson’S Disease During Daily Life, Vrutangkumar Shah, James Mcnames, Graham Harker, Martina Mancini, Patricia Carlson-Kuhta, John G. Nutt, Mahmoud El-Gohary, Carolin Curtze, Fay Horak Oct 2020

Effect Of Bout Length On Gait Measures In People With And Without Parkinson’S Disease During Daily Life, Vrutangkumar Shah, James Mcnames, Graham Harker, Martina Mancini, Patricia Carlson-Kuhta, John G. Nutt, Mahmoud El-Gohary, Carolin Curtze, Fay Horak

Electrical and Computer Engineering Faculty Publications and Presentations

Although the use of wearable technology to characterize gait disorders in daily life is increasing, there is no consensus on which specific gait bout length should be used to characterize gait. Clinical trialists using daily life gait quality as study outcomes need to understand how gait bout length affects the sensitivity and specificity of measures to discriminate pathological gait as well as the reliability of gait measures across gait bout lengths. We investigated whether Parkinson’s disease (PD) affects how gait characteristics change as bout length changes, and how gait bout length affects the reliability and discriminative ability of gait measures …


Fabrication And Characterization Of Flexible Three-Phase Zno-Graphene-Epoxy Electro-Active Thin-Film Nanocomposites: Towards Applications In Wearable Biomedical Devices, Mandeep Singh, Sanjeev Kumar, Shervin Zoghi, Debaki Sarcar, Saquib Ahmed, Shaestagir Chowdhury, Sankha Banerjee Jul 2020

Fabrication And Characterization Of Flexible Three-Phase Zno-Graphene-Epoxy Electro-Active Thin-Film Nanocomposites: Towards Applications In Wearable Biomedical Devices, Mandeep Singh, Sanjeev Kumar, Shervin Zoghi, Debaki Sarcar, Saquib Ahmed, Shaestagir Chowdhury, Sankha Banerjee

Mechanical and Materials Engineering Faculty Publications and Presentations

Perovskite oxides have been used as sensors, actuators, transducers, for sound generation and detection, and also in optical instruments and microscopes. Perovskite halides are currently considered as optoelectronic devices such as solar cells, photodetectors, and radiation detection, but there are major issues with stability, interfacial recombination, and electron/hole mobility. The following work looks into the fabrication of non-toxic ZnO-based lead-free alternatives to perovskite oxides for use as secondary sensors or electron transport layers along with perovskite halides for application in stacked biomedical wearable devices. Three-phase, lead-free, Zinc Oxide-Graphene-Epoxy electroactive nanocomposite thin films were fabricated. The volume fraction of the Graphene …


An Improved Method For Hospital Acquired Pressure Ulcer (Hapu) Prevention, Julia Beekman, Jillian Yeager, Megan Morrissey Jun 2020

An Improved Method For Hospital Acquired Pressure Ulcer (Hapu) Prevention, Julia Beekman, Jillian Yeager, Megan Morrissey

Honors Theses

Hospital acquired pressure ulcers (HAPUs), also called bedsores, are damage to the skin and/or underlying tissue caused by prolonged pressure on the bony areas of the body, with around 20% of pressure ulcers occurring in the heel region. Currently, the most common practice for HAPU prevention is arbitrary manual repositioning of patients by nurses every 1-2 hours. The goal of our project was to address HAPUs in the heel region of low mobility patients through an ulceration risk sensing system. Our team has created a wearable ulceration risk assessment system that combines individual patient risk data with real time pressure …


Modified Stent Design For A Coronary Bifurcation Lesion, Abigail Nowell May 2020

Modified Stent Design For A Coronary Bifurcation Lesion, Abigail Nowell

Biological Sciences Undergraduate Honors Theses

Currently, 18.2 million adults aged 20 and older are diagnosed with Coronary Artery Disease (CAD) (Benjamin et al., 2019). Stenosis is the most common intervention. However, when a patient has a bifurcated artery, treatment becomes more difficult and is often unsuccessful. This project created a new stent and balloon complex that was tested in vitro using a gel phantom artery model. Two separate prototypes have been created and tested so far, with improvements made upon each. Testing is still underway with Prototype 2.


Enhancement Of The Syncardia Total Artificial Heart For Pediatric Use, Margaret Clark, Madison Marks Jan 2020

Enhancement Of The Syncardia Total Artificial Heart For Pediatric Use, Margaret Clark, Madison Marks

Williams Honors College, Honors Research Projects

Pediatric patients with disorders and diseases of the heart have limited options with regards to implantable devices. Many of these implants are ventricular assist devices, which is not always suitable for a patient. Total artificial hearts (TAHs) have supported many adult patients until transplantation, and we believe that they could do the same for pediatric patients. SynCardia has the only Food and Drug Administration (FDA) approved TAH devices. Since SynCardia is the only company with FDA approved TAHs, we decided to modify the design of the SynCardia TAH for use in pediatric patients without compromising the function of the current …