Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Scaffold Design Considerations For Soft Tissue Regeneration, Madeleine M. Di Gregorio Aug 2019

Scaffold Design Considerations For Soft Tissue Regeneration, Madeleine M. Di Gregorio

Electronic Thesis and Dissertation Repository

Tissue engineering has emerged as a promising strategy for the replacement of degenerating or damaged tissues in vivo. Also known as regenerative medicine, integral to this therapeutic strategy is biomimetic scaffolds and the biomaterial structural components used to form them. In this study, three different biomaterial scaffolds for tissue engineering applications were fabricated: three-dimensional reverse embedded collagen scaffolds, polymer fusion printed polycaprolactone (PCL) scaffolds, and electrospun gelatin scaffolds. Three-dimensional collagen and PCL scaffolds promoted human adipose-derived stem/stromal cell (ASC) spreading, proliferation, and fibronectin deposition in vitro. Secondly, this study investigated the efficacy of exogenous galectin-3 delivery as a …


Multi-Functional Electrospun Nanofibers From Polymer Blends For Scaffold Tissue Engineering, Samerender Nagam Hanumantharao, Smitha Rao Jul 2019

Multi-Functional Electrospun Nanofibers From Polymer Blends For Scaffold Tissue Engineering, Samerender Nagam Hanumantharao, Smitha Rao

Michigan Tech Publications

Electrospinning and polymer blending have been the focus of research and the industry for their versatility, scalability, and potential applications across many different fields. In tissue engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and the general setup as well as modifications used are presented. Polymer blends, including blends with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller systems, are discussed in …


Nano Fab Lab 63, Brian K. Deemer, Josh Clemons, Nick Brodine, Delaney Fitzsimmons Jun 2019

Nano Fab Lab 63, Brian K. Deemer, Josh Clemons, Nick Brodine, Delaney Fitzsimmons

Mechanical Engineering

Lawrence Livermore National Laboratories (LLNL) has several steps in the production process for ceramic nanofiber tubes that they would like to improve - electrospinning, cutting, rolling, sealing and heat treating. We undertook the challenge to deliver LLNL with a semi-automated process that efficiently integrates the steps of cutting, rolling, and sealing to save time and improve control over end dimensions. In this document, we discuss the technical background of the manufacturing steps currently followed to create nanofiber tubes, identify which steps are incorporated in our prototype and explain how they will interface with one another, define the design requirements, present …


Self-Assembly Of 3d Nanostructures In Electrospun Polycaprolactone-Polyaniline Fibers And Their Application As Scaffolds For Tissue Engineering, Samerender Nagam Hanumantharao, Carolynn Que, Smitha Rao Mar 2019

Self-Assembly Of 3d Nanostructures In Electrospun Polycaprolactone-Polyaniline Fibers And Their Application As Scaffolds For Tissue Engineering, Samerender Nagam Hanumantharao, Carolynn Que, Smitha Rao

Department of Biomedical Engineering Publications

The fabrication of synthetic scaffolds that mimic the microenvironment of cells is a crucial challenge in materials science. The honeycomb morphology is one such bio-mimicking structure that possesses unique physical properties and high packing efficiency in a 3-dimensional space. Here, we present a novel method for electrospinning polycaprolactone-polyaniline with continuous, self-assembled, uniform, interwoven nanofibers forming patterns without the use of templates or porogens. By using the approach presented here, unique architectures mimicking the natural mechanical anisotropy of extracellular matrix were created by varying the electric field. Adult human dermal fibroblasts (HDFa) cells were successfully cultured on the nanofiber scaffolds without …